Misplaced Pages

GJ 1151: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 04:14, 5 February 2021 edit217.44.211.172 (talk) Planetary system← Previous edit Revision as of 06:13, 5 February 2021 edit undoTrurle (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers16,588 edits Planetary system: planet discovery confirmationNext edit →
Line 51: Line 51:
This is a small ] star of ] dM4.5.<ref name=Houdebine2019/> It is 2.5<ref name=Mann2015/>&nbsp;billion years old and is spinning with a ] of 2.0&nbsp;km/s.<ref name=Jeffers2018/> The star has 15.4%<ref name=Mann2015/> of the ] and 19.0%<ref name=Mann2015/> of the ], with an ] of 3,143&nbsp;K.<ref name=Houdebine2019/> This is a small ] star of ] dM4.5.<ref name=Houdebine2019/> It is 2.5<ref name=Mann2015/>&nbsp;billion years old and is spinning with a ] of 2.0&nbsp;km/s.<ref name=Jeffers2018/> The star has 15.4%<ref name=Mann2015/> of the ] and 19.0%<ref name=Mann2015/> of the ], with an ] of 3,143&nbsp;K.<ref name=Houdebine2019/>
==Planetary system== ==Planetary system==
In 2020, astronomers announced the discovery of radio emissions from the star which are consistent with the star having a magnetic interaction with a planet approximately the size of ], revolving in a 1-5 day long orbit.<ref name=Vedantham2020/><ref name="APJ-20200217"/><ref name="SA-20200229"/><ref name=SciNews/><ref name=Redd2020/><ref name=Clark/> Such an interaction would be analogous to a scaled-up version of the ], with GJ 1151 taking the role of Jupiter and its planet the role of Io. In 2020, astronomers announced the discovery of radio emissions from the star which are consistent with the star having a magnetic interaction with a planet approximately the size of ], revolving in a 1-5 day long orbit.<ref name=Vedantham2020/><ref name="APJ-20200217"/><ref name="SA-20200229"/><ref name=SciNews/><ref name=Redd2020/><ref name=Clark/> Such an interaction would be analogous to a scaled-up version of the ], with GJ 1151 taking the role of Jupiter and its planet the role of Io. The discovery was confirmed in February 2021 utilizing a ].<ref name=Mahadevan2021>{{citation|arxiv=2102.02233|year=2021|title=The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star}}</ref>


{{OrbitboxPlanet begin {{OrbitboxPlanet begin
| name = <!--Name of star (only use if article title differs from planet host star name)--> | name = <!--Name of star (only use if article title differs from planet host star name)-->
| table_ref = <ref name="APJ-20200217"/> | table_ref = <ref name="APJ-20200217"/><ref name=Mahadevan2021/>
| period_unit = day | period_unit = day
}} }}
{{OrbitboxPlanet hypothetical {{OrbitboxPlanet
| exoplanet = ] | exoplanet = ]
| mass = 0.0176{{±|0|0.0176}} | mass_earth = 2.5{{±|0.5}}
| radius = 0.09 | radius = 0.09
| semimajor = <!--Semimajor axis (or distance from star) of the planet in AU--> | semimajor = <!--Semimajor axis (or distance from star) of the planet in AU-->
| period = 3{{±|2}} | period = 2.02
| eccentricity = <!--Eccentricity of the planet--> | eccentricity = <!--Eccentricity of the planet-->
| inclination = <!-- Orbital inclination (to the line of sight) --> | inclination = <!-- Orbital inclination (to the line of sight) -->

Revision as of 06:13, 5 February 2021

GJ 1151

Imaginary diagram of GJ 1151 and GJ 1151 b.
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Ursa Major
Right ascension 11 50 57.72145
Declination +48° 22′ 38.5625″
Apparent magnitude (V) 14.008
Characteristics
Spectral type dM4.5
B−V color index 1.787
Astrometry
Radial velocity (Rv)−36.01±0.28 km/s
Proper motion (μ) RA: -1545.069 mas/yr
Dec.: -962.724 mas/yr
Parallax (π)124.3378 ± 0.0549 mas
Distance26.23 ± 0.01 ly
(8.043 ± 0.004 pc)
Absolute magnitude (MV)14.482±0.022
Details
Mass0.1540 M
Radius0.1903 R
Temperature3,143±26 K
Metallicity +0.04 dex
Rotational velocity (v sin i)2.0 km/s
Age2.5 Gyr
Other designations
GJ 1151, G 122-49, LHS 316, NLTT 28752, 2MASS J11505787+4822395, Gaia EDR3 786834302080370304
Database references
SIMBADdata

GJ 1151 is a star located in the northern circumpolar constellation of Ursa Major at a distance of 26.2 light years from the Sun. It has a reddish hue and is too faint to be visible to the naked eye with an apparent visual magnitude of 14.0 The star is moving closer with a radial velocity of −36 km/s, and has a relatively large proper motion, traversing the celestial sphere at a rate of 1.815·yr.

This is a small red dwarf star of spectral type dM4.5. It is 2.5 billion years old and is spinning with a projected rotational velocity of 2.0 km/s. The star has 15.4% of the mass of the Sun and 19.0% of the Sun's radius, with an effective temperature of 3,143 K.

Planetary system

In 2020, astronomers announced the discovery of radio emissions from the star which are consistent with the star having a magnetic interaction with a planet approximately the size of Earth, revolving in a 1-5 day long orbit. Such an interaction would be analogous to a scaled-up version of the Jupiter-Io magnetic interaction, with GJ 1151 taking the role of Jupiter and its planet the role of Io. The discovery was confirmed in February 2021 utilizing a radial velocity method.

The planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 2.5±0.5 M🜨 2.02 0.09 RJ

See also

References

  1. ^ Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  2. ^ Houdebine, Éric R.; et al. (August 2019). "The Mass-Activity Relationships in M and K Dwarfs. I. Stellar Parameters of Our Sample of M and K Dwarfs". The Astronomical Journal. 158 (2): 17. arXiv:1905.07921. Bibcode:2019AJ....158...56H. doi:10.3847/1538-3881/ab23fe. S2CID 159041104. 56.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Mann, Andrew W.; et al. (May 2015). "How to Constrain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius". The Astrophysical Journal. 804 (1): 38. arXiv:1501.01635. Bibcode:2015ApJ...804...64M. doi:10.1088/0004-637X/804/1/64. S2CID 19269312. 64.
  4. ^ Jeffers, S. V.; et al. (June 2018). "CARMENES input catalogue of M dwarfs. III. Rotation and activity from high-resolution spectroscopic observations". Astronomy & Astrophysics. 614: 19. arXiv:1802.02102. Bibcode:2018A&A...614A..76J. doi:10.1051/0004-6361/201629599. S2CID 56147445. A76.
  5. "G 122-49". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2020-03-02.
  6. Lépine, Sébastien; Shara, Michael M. (March 2005). "A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)". The Astronomical Journal. 129 (3): 1483–1522. arXiv:astro-ph/0412070. Bibcode:2005AJ....129.1483L. doi:10.1086/427854. S2CID 2603568.
  7. Vedantham, H. K.; et al. (2020-02-17). "Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction". Nature Astronomy. 4 (6): 577–583. arXiv:2002.08727. Bibcode:2020NatAs.tmp...34V. doi:10.1038/s41550-020-1011-9. ISSN 2397-3366. S2CID 211204712.{{cite journal}}: CS1 maint: bibcode (link)
  8. ^ Pope, Benjamin J. S.; et al. (17 February 2020). "No Massive Companion to the Coherent Radio-emitting M Dwarf GJ 1151". The Astrophysical Journal Letters. 890 (2): L19. arXiv:2002.07850. Bibcode:2020ApJ...890L..19P. doi:10.3847/2041-8213/ab5b99. S2CID 211171765. Retrieved 1 March 2020.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. Starr, Michelle (29 February 2020). "For The First Time, Astronomers Have Detected an Exoplanet Using Radio Waves". ScienceAlert.com. Retrieved 1 March 2020.
  10. "Radio telescope measures aurorae in distant planetary system". UPI. Retrieved 2020-02-26.
  11. Redd, Nola Taylor. "New Exoplanet Search Strategy Claims First Discovery". Quanta Magazine. Retrieved 2020-02-26.
  12. Clark, Stuart. "An exoplanet is generating radio waves from its red dwarf sun". New Scientist. Retrieved 2020-02-26.
  13. ^ The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star, 2021, arXiv:2102.02233
Known celestial objects within 20 light-years
Primary member type
Celestial objects by systems. Secondary members are listed in small print.
    0–10 ly
Main-sequence
stars
A-type
G-type
M-type
(red dwarfs)
Brown dwarfs
L-type
  • Luhman 16 (6.5029±0.0011 ly)
  • T-type brown dwarf B
Sub-brown dwarfs
and rogue planets
Y-type
10–15 ly
Subgiant stars
F-type
Main-sequence
stars
G-type
  • Tau Ceti (11.9118±0.0074 ly)
  • 4 (8?) planets: (b), (c), (d), e, f, g, h, (i)
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
T-type
15–20 ly    
Subgiant stars
G-type
Main-sequence
stars
A-type
G-type
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
L-type
T-type
Y-type
Sub-brown dwarfs
and rogue planets
Y-type
Italic are systems without known trigonometric parallax.
Constellation of Ursa Major
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Nebulae
Galaxies
Messier
NGC
Other
Astronomical events
Category
Categories: