Misplaced Pages

Latex: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 07:30, 30 August 2022 editGeorgelazenby (talk | contribs)Extended confirmed users3,104 edits Defense functionTag: Visual edit← Previous edit Revision as of 12:55, 13 September 2022 edit undoCrafterNova (talk | contribs)Extended confirmed users16,640 edits spacing for better readability of source codeTags: Mobile edit Mobile web edit Advanced mobile editNext edit →
Line 3: Line 3:
{{other uses}} {{other uses}}
{{Technical|date=April 2020}} {{Technical|date=April 2020}}

] of latex from a ], for use in ] production]] ] of latex from a ], for use in ] production]]

'''Latex''' is a stable dispersion (]) of ] ]s in water.<ref>{{cite journal |doi=10.1080/15583724.2013.776586|title=Homogeneous Hydrogenation Art of Nitrile Butadiene Rubber: A Review|year=2013|last1=Wang|first1=Hui|last2=Yang|first2=Lijuan|last3=Rempel|first3=Garry L.|journal=Polymer Reviews|volume=53|issue=2|pages=192–239|s2cid=96720306}}</ref> Latexes are found in ], but synthetic latexes are common as well. '''Latex''' is a stable dispersion (]) of ] ]s in water.<ref>{{cite journal |doi=10.1080/15583724.2013.776586|title=Homogeneous Hydrogenation Art of Nitrile Butadiene Rubber: A Review|year=2013|last1=Wang|first1=Hui|last2=Yang|first2=Lijuan|last3=Rempel|first3=Garry L.|journal=Polymer Reviews|volume=53|issue=2|pages=192–239|s2cid=96720306}}</ref> Latexes are found in ], but synthetic latexes are common as well.



Revision as of 12:55, 13 September 2022

Stable dispersion of polymer microparticles in an aqueous medium For the document preparation system and markup language, see LaTeX. For other uses, see Latex (disambiguation).
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (April 2020) (Learn how and when to remove this message)
Tapping of latex from a tree, for use in rubber production

Latex is a stable dispersion (emulsion) of polymer microparticles in water. Latexes are found in nature, but synthetic latexes are common as well.

Latex as found in nature is a milky fluid found in 10% of all flowering plants (angiosperms). It is a complex emulsion that coagulates on exposure to air, consisting of proteins, alkaloids, starches, sugars, oils, tannins, resins, and gums. It is usually exuded after tissue injury. In most plants, latex is white, but some have yellow, orange, or scarlet latex. Since the 17th century, latex has been used as a term for the fluid substance in plants, deriving from the Latin word for "liquid". It serves mainly as defense against herbivorous insects. Latex is not to be confused with plant sap; it is a distinct substance, separately produced, and with different functions.

The word latex is also used to refer to natural latex rubber, particularly non-vulcanized rubber. Such is the case in products like latex gloves, latex condoms and latex clothing.

IUPAC definition.

Latex: Colloidal dispersion of polymer particles in a liquid.
Synthetic latex: Latex obtained as a product of an emulsion, mini-emulsion, micro-emulsion, or dispersion polymerization.

Biology

Articulated laticifers

The cells (laticifers) in which latex is found make up the laticiferous system, which can form in two very different ways. In many plants, the laticiferous system is formed from rows of cells laid down in the meristem of the stem or root. The cell walls between these cells are dissolved so that continuous tubes, called latex vessels, are formed. Since these vessels are made of many cells, they are known as articulated laticifers. This method of formation is found in the poppy family and in the rubber trees (Para rubber tree, members of the family Euphorbiaceae, members of the mulberry and fig family, such as the Panama rubber tree Castilla elastica), and members of the family Asteraceae. For instance, Parthenium argentatum the guayule plant, is in the tribe Heliantheae; other latex-bearing Asteraceae with articulated laticifers include members of the Cichorieae, a clade whose members produce latex, some of them in commercially interesting amounts. This includes Taraxacum kok-saghyz, a species cultivated for latex production.

Non-articulated laticifers

In the milkweed and spurge families, on the other hand, the laticiferous system is formed quite differently. Early in the development of the seedling, latex cells differentiate, and as the plant grows these latex cells grow into a branching system extending throughout the plant. In many euphorbs, the entire structure is made from a single cell – this type of system is known as a non-articulated laticifer, to distinguish it from the multi-cellular structures discussed above. In the mature plant, the entire laticiferous system is descended from a single cell or group of cells present in the embryo.

The laticiferous system is present in all parts of the mature plant, including roots, stems, leaves, and sometimes the fruits. It is particularly noticeable in the cortical tissues. Latex is usually exuded as a white liquid, but is some cases it can be clear, yellow or red, as in Cannabaceae.

Productive species

Latex is produced by 20,000 flowering plant species from over 40 families. These include both dicots and monocots. Latex has been found in 14 percent of tropical plant species, as well as six percent of temperate plant species. Several members of the fungal kingdom also produce latex upon injury, such as Lactarius deliciosus and other milk-caps. This suggests it is the product of convergent evolution and has been selected for on many separate occasions.

Defense function

Rubber tapping latex

Latex functions to protect the plant from herbivores. The idea was first proposed in 1887 by Joseph F. James, who noted that latex

carries with it at the same time such disagreeable properties that it becomes a better protection to the plant from enemies than all the thorns, prickles, or hairs that could be provided. In this plant, so copious and so distasteful has the sap become that it serves a most important purpose in its economy.

Evidence showing this defense function include the finding that slugs will eat leaves drained of their latex but not intact ones, that many insects sever the veins carrying latex before they feed, and that the latex of Asclepias humistrata (sandhill milkweed) kills by trapping 30% of newly hatched monarch butterfly caterpillars.

Other evidence is that latex contains 50–1000× higher concentrations of defense substances than other plant tissues. These toxins include ones that are also toxic to the plant and consist of a diverse range of chemicals that are either poisonous or "antinutritive."

Latex is actively moved to the area of injury; in the case of Cryptostegia grandiflora, latex more than 70 cm from the site of injury is mobilized. The large hydrostatic pressure in this vine enables an extremely high flow rate of latex. In a 1935 report the botanist Catherine M. Bangham observed that "piercing the fruit stalk of Cryptostegia grandiflora produced a jet of latex over a meter long, and maintained for several seconds."

The clotting property of latex is functional in this defense since it limits wastage and its stickiness traps insects and their mouthparts.

While there exist other explanations for the existence of latex including storage and movement of plant nutrients, waste, and maintenance of water balance that "ssentially none of these functions remain credible and none have any empirical support".

Applications

Opium poppy exuding fresh latex from a cut

The latex of many species can be processed to produce many materials.

Personal and healthcare products

Natural rubber is the most important product obtained from latex; more than 12,000 plant species yield latex containing rubber, though in the vast majority of those species the rubber is not suitable for commercial use. This latex is used to make many other products including mattresses, gloves, swim caps, condoms, catheters and balloons.

Opium and opiates

Dried latex from the opium poppy is called opium, the source of several useful analgesic alkaloids such as codeine, thebaine, and morphine, the latter two of which can then further be used in the synthesis and manufacture of other (typically stronger) opioids for medicinal use, and of heroin for the illegal drug trade. The opium poppy is also the source of medically useful non-analgesic alkaloids, such as papaverine and noscapine.

Clothing

Main article: Latex clothing

Latex is used in many types of clothing. Worn on the body (or applied directly by painting), it tends to be skin-tight, producing a "second skin" effect.

Industrial and biological applications from synthetic latexes

Synthetic latexes are used in coatings (e.g., latex paint) and glues because they solidify by coalescence of the polymer particles as the water evaporates. These synthetic latexes therefore can form films without releasing potentially toxic organic solvents in the environment. Other uses include cement additives and to conceal information on scratchcards. Latex, usually styrene-based, is also used in immunoassays.

Allergic reactions

Main article: Latex allergy

Some people only experience a mild allergy when exposed to latex, like eczema, contact dermatitis or developing a rash.

Others have a serious latex allergy, and exposure to latex products such as latex gloves can cause anaphylactic shock. Guayule latex has only 2% of the levels of protein found in Hevea latexes, and is being researched as a lower-allergen substitute. Additionally, chemical processes may be employed to reduce the amount of antigenic protein in Hevea latex, yielding alternative materials such as Vytex Natural Rubber Latex which provide significantly reduced exposure to latex allergens.

About half of people with spina bifida are also allergic to natural latex rubber, as well as people who have had multiple surgeries, and people who have had prolonged exposure to natural latex.

Microbial degradation

Several species of the microbe genera Actinomycetes, Streptomyces, Nocardia, Micromonospora, and Actinoplanes are capable of consuming rubber latex. However, the rate of biodegradation is slow, and the growth of bacteria utilizing rubber as a sole carbon source is also slow.

See also

References

Footnotes

  1. The polymer in the particles may be organic or inorganic.

Notes

  1. Wang, Hui; Yang, Lijuan; Rempel, Garry L. (2013). "Homogeneous Hydrogenation Art of Nitrile Butadiene Rubber: A Review". Polymer Reviews. 53 (2): 192–239. doi:10.1080/15583724.2013.776586. S2CID 96720306.
  2. ^ Anurag A. Agrawal; d Kotaro Konno (2009). "Latex: a model for understanding mechanisms, ecology, and evolution of plant defense Against herbivory". Annual Review of Ecology, Evolution, and Systematics. 40: 311–331. doi:10.1146/annurev.ecolsys.110308.120307.
  3. Paul G. Mahlberg (1993). "Laticifers: an historical perspective". The Botanical Review. 59 (1): 1–23. doi:10.1007/bf02856611. JSTOR 4354199. S2CID 40056337.
  4. Harper, Douglas. "latex". Online Etymology Dictionary.
  5. latex. Charlton T. Lewis and Charles Short. A Latin Dictionary on Perseus Project.
  6. ^ Stanislaw Slomkowski; José V. Alemán; Robert G. Gilbert; Michael Hess; Kazuyuki Horie; Richard G. Jones; Przemyslaw Kubisa; Ingrid Meisel; Werner Mormann; Stanisław Penczek; Robert F. T. Stepto (2011). "Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)" (PDF). Pure and Applied Chemistry. 83 (12): 2229–2311. doi:10.1351/PAC-REC-10-06-03. S2CID 96812603. Archived (PDF) from the original on 2013-10-20.
  7. "Taraxacum kok-saghyz". Pfaf.org. Archived from the original on 2014-03-20. Retrieved 2013-03-21.
  8. Thomas M. Lewinsohn (1991). "The geographical distribution of plant latex". Chemoecology. 2 (1): 64–68. doi:10.1007/BF01240668. S2CID 44594197.
  9. Joseph F. James (1887). "The milkweeds". The American Naturalist. 21 (7): 605–615. doi:10.1086/274519. JSTOR 2451222.
  10. Buttery, R. R.; Boatman, S. G. (1976). Kozlowski, T. T. (ed.). Water Deficits and Plant Growth, Volume IV: Soil Water Measurement, Plant Responses, and Breeding for Drought Resistance. Vol. IV (1st ed.). New York, New York 10003: Academic Press, Inc. p. 252. ISBN 978-0124314269.{{cite book}}: CS1 maint: location (link)
  11. Mathews, Jennifer P. (2009). Chicle: The chewing gum of the Americas, from the ancient Maya to William Wrigley. Tucson: University of Arizona Press. ISBN 978-0-8165-2821-9.
  12. J. E. Bowers (1990). Natural Rubber-Producing Plants for the United States. Beltsville, MD: National Agricultural Library. pp. 1, 3. OCLC 28534889.
  13. Liman, Stacy (26 June 2020). "Latex Mattresses: The Best Latex Mattress Guide". Retrieved 17 August 2020.
  14. Yurkovich, Dror. "Dunlop latex vs. Talalay latex". Getha.{{cite web}}: CS1 maint: url-status (link)
  15. Kink and everyday life : interdisciplinary reflections on practice and portrayal. Kylo-Patrick R. Hart, Teresa Cutler-Broyles. Bingley. 2021. ISBN 978-1-83982-918-5. OCLC 1262726608.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  16. "Latex Allergy | Causes, Symptoms & Treatment". ACAAI Public Website. Retrieved 2019-03-24.
  17. Anderson, Christopher D.; Daniels, Eric S. (8 May 2018). Emulsion Polymerisation and Latex Applications. iSmithers Rapra Publishing. ISBN 9781859573815. Retrieved 8 May 2018 – via Google Books.
  18. "Latex allergy - Symptoms and causes". mayoclinic.com. Archived from the original on 7 October 2013. Retrieved 8 May 2018.
  19. Helge B. Bode; Axel Zeeck; Kirsten Plückhahn; Dieter Jendrossek (September 2000). "Physiological and Chemical Investigations into Microbial Degradation of Synthetic Poly(cis-1,4-isoprene)". Applied and Environmental Microbiology. 66 (9): 3680–3685. Bibcode:2000ApEnM..66.3680B. doi:10.1128/aem.66.9.3680-3685.2000. PMC 92206. PMID 10966376.
  20. Rose, K.; Steinbuchel, A. (2 June 2005). "Biodegradation of Natural Rubber and Related Compounds: Recent Insights into a Hardly Understood Catabolic Capability of Microorganisms". Applied and Environmental Microbiology. 71 (6): 2803–2812. Bibcode:2005ApEnM..71.2803R. doi:10.1128/AEM.71.6.2803-2812.2005. PMC 1151847. PMID 15932971.

External links

  • Media related to latex at Wikimedia Commons
Forestry
Types
Ecology and
management
Environmental
topics
Industries
Occupations
Non-timber forest products
Animal products
Edible plants / roots
Mushrooms
Resins
Sap / gum / etc.
Other
Related
Categories: