Revision as of 13:40, 11 October 2022 editLithopsian (talk | contribs)Autopatrolled, Extended confirmed users, New page reviewers68,673 edits no reference for age, add a value with a reference← Previous edit | Revision as of 05:20, 27 February 2023 edit undoCitation bot (talk | contribs)Bots5,445,340 edits Alter: title. Add: s2cid, doi, pages, volume, journal, bibcode. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 2441/2726Next edit → | ||
Line 14: | Line 14: | ||
| class = M0Ve<ref name=Lindegren2021>{{citation|arxiv=2105.09014|year=2021|title=Astrometric radial velocities for nearby stars|doi=10.1051/0004-6361/202141344|last1=Lindegren|first1=Lennart|last2=Dravins|first2=Dainis|journal=Astronomy & Astrophysics|volume=652|pages=A45|bibcode=2021A&A...652A..45L|s2cid=234778154}}</ref> | | class = M0Ve<ref name=Lindegren2021>{{citation|arxiv=2105.09014|year=2021|title=Astrometric radial velocities for nearby stars|doi=10.1051/0004-6361/202141344|last1=Lindegren|first1=Lennart|last2=Dravins|first2=Dainis|journal=Astronomy & Astrophysics|volume=652|pages=A45|bibcode=2021A&A...652A..45L|s2cid=234778154}}</ref> | ||
| appmag_1_passband = J | | appmag_1_passband = J | ||
| appmag_1 = 5.902{{±|0.018}}<ref name=Lindgren2017>{{citation|arxiv=1705.08785|year=2017|title=Metallicity determination of M dwarfs|doi=10.1051/0004-6361/201730715|last1=Lindgren|first1=Sara|last2=Heiter|first2=Ulrike|journal=Astronomy & Astrophysics|volume=604|pages=A97|s2cid=119216828}}</ref> | | appmag_1 = 5.902{{±|0.018}}<ref name=Lindgren2017>{{citation|arxiv=1705.08785|year=2017|title=Metallicity determination of M dwarfs|doi=10.1051/0004-6361/201730715|last1=Lindgren|first1=Sara|last2=Heiter|first2=Ulrike|journal=Astronomy & Astrophysics|volume=604|pages=A97|bibcode=2017A&A...604A..97L |s2cid=119216828}}</ref> | ||
| appmag_2_passband = H | | appmag_2_passband = H | ||
| appmag_2 = 5.300{{±|0.033}}<ref name=Lindgren2017/> | | appmag_2 = 5.300{{±|0.033}}<ref name=Lindgren2017/> | ||
Line 56: | Line 56: | ||
==Planetary system== | ==Planetary system== | ||
The existence of a planet on a 15-day orbit around Gliese 514 was suspected since 2019.<ref>{{cite arXiv|last1=Barnes|first1=J. R.|last2=Kiraga|first2=M.|last3=Diaz|first3=M.|last4=Berdiñas|first4=Z.|last5=Jenkins|first5=J. S.|last6=Keiser|first6=S.|last7=Thompson|first7=I.|last8=Crane|first8=J. D.|last9=Shectman|first9=S. A.|display-authors=1|date=2019-06-11|title=Frequency of planets orbiting M dwarfs in the Solar neighbourhood|class=astro-ph.EP|eprint=1906.04644|language=en}}</ref> However, that planet was not confirmed. Instead, in 2022, one ] planet, named ], was discovered on an eccentric 140-day orbit by the ]. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to {{val|202|11}} ].<ref name=Damasso2022>{{citation|arxiv=2204.06376|year=2022|title=A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514 |
The existence of a planet on a 15-day orbit around Gliese 514 was suspected since 2019.<ref>{{cite arXiv|last1=Barnes|first1=J. R.|last2=Kiraga|first2=M.|last3=Diaz|first3=M.|last4=Berdiñas|first4=Z.|last5=Jenkins|first5=J. S.|last6=Keiser|first6=S.|last7=Thompson|first7=I.|last8=Crane|first8=J. D.|last9=Shectman|first9=S. A.|display-authors=1|date=2019-06-11|title=Frequency of planets orbiting M dwarfs in the Solar neighbourhood|class=astro-ph.EP|eprint=1906.04644|language=en}}</ref> However, that planet was not confirmed. Instead, in 2022, one ] planet, named ], was discovered on an eccentric 140-day orbit by the ]. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to {{val|202|11}} ].<ref name=Damasso2022>{{citation|arxiv=2204.06376|year=2022|title=A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514|last1=Damasso|first1=M.|last2=Perger|first2=M.|last3=Almenara|first3=J. M.|last4=Nardiello|first4=D.|last5=Pérez-Torres|first5=M.|last6=Sozzetti|first6=A.|last7=Hara|first7=N. C.|last8=Quirrenbach|first8=A.|last9=Bonfils|first9=X.|last10=Zapatero Osorio|first10=M. R.|last11=Astudillo-Defru|first11=N.|last12=González Hernández|first12=J. I.|last13=Suárez Mascareño|first13=A.|last14=Amado|first14=P. J.|last15=Forveille|first15=T.|last16=Lillo-Box|first16=J.|last17=Alibert|first17=Y.|last18=Caballero|first18=J. A.|last19=Cifuentes|first19=C.|last20=Delfosse|first20=X.|last21=Figueira|first21=P.|last22=Galadí-Enríquez|first22=D.|last23=Hatzes|first23=A. P.|last24=Henning|first24=Th.|last25=Kaminski|first25=A.|last26=Mayor|first26=M.|last27=Murgas|first27=F.|last28=Montes|first28=D.|last29=Pinamonti|first29=M.|last30=Reiners|first30=A.|journal=Astronomy & Astrophysics |volume=666 |pages=A187 |doi=10.1051/0004-6361/202243522 |s2cid=248157318 |display-authors=1}}</ref> | ||
The infrared excess of the star also indicates the possible presence of a debris disk in the system, albeit at a low signal to noise ratio.<ref>{{citation|arxiv=2004.12597|year=2020|title=Herschel Observations of Disks around Late-type Stars|doi=10.1088/1538-3873/ab895f|last1=Tanner|first1=Angelle|last2=Plavchan|first2=Peter|last3=Bryden|first3=Geoff|last4=Kennedy|first4=Grant|last5=Matrá|first5=Luca|last6=Cronin-Coltsmann|first6=Patrick|last7=Lowrance|first7=Patrick|last8=Henry|first8=Todd|last9=Riaz|first9=Basmah|last10=Gizis|first10=John E.|last11=Riedel|first11=Adric|last12=Choquet|first12=Elodie|journal=Publications of the Astronomical Society of the Pacific|volume=132|issue=1014|page=084401|bibcode=2020PASP..132h4401T|s2cid=216553868}}</ref> | The infrared excess of the star also indicates the possible presence of a debris disk in the system, albeit at a low signal to noise ratio.<ref>{{citation|arxiv=2004.12597|year=2020|title=Herschel Observations of Disks around Late-type Stars|doi=10.1088/1538-3873/ab895f|last1=Tanner|first1=Angelle|last2=Plavchan|first2=Peter|last3=Bryden|first3=Geoff|last4=Kennedy|first4=Grant|last5=Matrá|first5=Luca|last6=Cronin-Coltsmann|first6=Patrick|last7=Lowrance|first7=Patrick|last8=Henry|first8=Todd|last9=Riaz|first9=Basmah|last10=Gizis|first10=John E.|last11=Riedel|first11=Adric|last12=Choquet|first12=Elodie|journal=Publications of the Astronomical Society of the Pacific|volume=132|issue=1014|page=084401|bibcode=2020PASP..132h4401T|s2cid=216553868}}</ref> |
Revision as of 05:20, 27 February 2023
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Virgo |
Right ascension | 13 29 59.7859 |
Declination | 10° 22′ 37.7845″ |
Apparent magnitude (V) | 9.029 |
Characteristics | |
Evolutionary stage | main-sequence star |
Spectral type | M0Ve |
Apparent magnitude (J) | 5.902±0.018 |
Apparent magnitude (H) | 5.300±0.033 |
Astrometry | |
Radial velocity (Rv) | 14.606 km/s |
Proper motion (μ) | RA: 1,127.34±0.03 mas/yr Dec.: −1,073.888±0.013 mas/yr |
Parallax (π) | 131.1013 ± 0.0270 mas |
Distance | 24.878 ± 0.005 ly (7.628 ± 0.002 pc) |
Absolute magnitude (MV) | 5.89 |
Details | |
Mass | 0.526 M☉ |
Radius | 0.611±0.043 R☉ |
Luminosity (bolometric) | 0.043 L☉ |
Surface gravity (log g) | 4.59 cgs |
Temperature | 2,901 - 3,727 K |
Metallicity | −0.07±0.07 dex |
Rotation | 28.0±2.9 |
Rotational velocity (v sin i) | 2.00 km/s |
Age | 8.25 Gyr |
Other designations | |
BD+11 2576, HIP 65859, LTT 13925, Ross 490, TYC 895-317-1, 2MASS J13295979+1022376, Gaia EDR3 3738099879558957952 | |
Database references | |
SIMBAD | data |
Gliese 514, also known as BD+11 2576 or HIP 65859, is a M-type main-sequence star, in the constellation Virgo 24.85 light-years away from the Sun. The proximity of Gliese 514 to the Sun was known exactly since 1988.
Gliese 514's metallicity Fe/H index is largely unknown, with median values from -0.4 to +0.18 reported in the literature. This discrepancy is due to peculiarities of the stellar spectrum of Gliese 514. The spectrum peculiarities also affect the accuracy of the star's temperature measurement, with reported values as low as 2901 K. The spectrum of Gliese 514 shows emission lines, but the star itself has a low starspot activity.
Multiplicity surveys did not detect any stellar companions as of 2020.
The Sun is currently calculated to be passing through the tidal tail of Gliese 514`s Oort cloud. Thus, future interstellar objects passing through Solar system may originate from Gliese 514.
Planetary system
The existence of a planet on a 15-day orbit around Gliese 514 was suspected since 2019. However, that planet was not confirmed. Instead, in 2022, one Super-Earth planet, named Gliese 514 b, was discovered on an eccentric 140-day orbit by the radial velocity method. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to 202±11 K.
The infrared excess of the star also indicates the possible presence of a debris disk in the system, albeit at a low signal to noise ratio.
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | >5.2±0.9 M🜨 | 0.422 −0.015 |
140.43±0.41 | 0.45 −0.14 |
— | — |
References
- ^ "BD+11 2576". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2022-04-17.
- ^ Lindegren, Lennart; Dravins, Dainis (2021), "Astrometric radial velocities for nearby stars", Astronomy & Astrophysics, 652: A45, arXiv:2105.09014, Bibcode:2021A&A...652A..45L, doi:10.1051/0004-6361/202141344, S2CID 234778154
- ^ Lindgren, Sara; Heiter, Ulrike (2017), "Metallicity determination of M dwarfs", Astronomy & Astrophysics, 604: A97, arXiv:1705.08785, Bibcode:2017A&A...604A..97L, doi:10.1051/0004-6361/201730715, S2CID 119216828
- Manara, C. F.; et al. (2021), "PENELLOPE: The ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES)", Astronomy & Astrophysics, 650: A196, arXiv:2103.12446, doi:10.1051/0004-6361/202140639, S2CID 232320330
- ^ Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
- ^ Ghosh, Samrat; Ghosh, Supriyo; Das, Ramkrishna; Mondal, Soumen; Khata, Dhrimadri (2020), "Understanding the physical properties of young M dwarfs: NIR spectroscopic studies", Monthly Notices of the Royal Astronomical Society, 493 (3): 4533–4550, arXiv:2002.05762, doi:10.1093/mnras/staa427
{{citation}}
: CS1 maint: unflagged free DOI (link) - ^ Berger, D. H.; Gies, D. R.; McAlister, H. A.; Brummelaar, T. A. ten; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Merand, A. (2006), "First Results from the CHARA Array. IV. The Interferometric Radii of Low‐Mass Stars", The Astrophysical Journal, 644 (1): 475–483, arXiv:astro-ph/0602105, Bibcode:2006ApJ...644..475B, doi:10.1086/503318, S2CID 14966363
- ^ Damasso, M.; et al. (2022), "A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514", Astronomy & Astrophysics, 666: A187, arXiv:2204.06376, doi:10.1051/0004-6361/202243522, S2CID 248157318
- ^ Olander, T.; Heiter, U.; Kochukhov, O. (2021), "Comparative high-resolution spectroscopy of M dwarfs: Exploring non-LTE effects", Astronomy & Astrophysics, 649: A103, arXiv:2102.08836, Bibcode:2021A&A...649A.103O, doi:10.1051/0004-6361/202039747, S2CID 231942628
- Maldonado, J.; Micela, G.; Baratella, M.; d'Orazi, V.; Affer, L.; Biazzo, K.; Lanza, A. F.; Maggio, A.; González Hernández, J. I.; Perger, M.; Pinamonti, M.; Scandariato, G.; Sozzetti, A.; Locci, D.; Di Maio, C.; Bignamini, A.; Claudi, R.; Molinari, E.; Rebolo, R.; Ribas, I.; Toledo-Padrón, B.; Covino, E.; Desidera, S.; Herrero, E.; Morales, J. C.; Suárez-Mascareño, A.; Pagano, I.; Petralia, A.; Piotto, G.; Poretti, E. (2020). "HADES RV programme with HARPS-N at TNG. XII. The abundance signature of M dwarf stars with planets". Astronomy and Astrophysics. 644: A68. arXiv:2010.14867. Bibcode:2020A&A...644A..68M. doi:10.1051/0004-6361/202039478. S2CID 225094682.
- Determinations of the parallaxes of BD +11 2576 and BD +18 683
- Reiners, A. (2007), "The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation", Astronomy and Astrophysics, 467 (1): 259, arXiv:astro-ph/0702634, Bibcode:2007A&A...467..259R, doi:10.1051/0004-6361:20066991, S2CID 8672566
- Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Schonhut-Stasik, Jessica; Ziegler, Carl; Salama, Maïssa; Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Kulkarni, Shrinivas R.; Winters, Jennifer G.; Irwin, Jonathan M. (2020), "Robo-AO M-dwarf Multiplicity Survey: Catalog", The Astronomical Journal, 159 (4): 139, arXiv:2001.05988, Bibcode:2020AJ....159..139L, doi:10.3847/1538-3881/ab6ef1, S2CID 210718832
{{citation}}
: CS1 maint: unflagged free DOI (link) - Portegies Zwart, S. (2021), "Oort cloud Ecology", Astronomy & Astrophysics, 647: A136, arXiv:2011.08257, doi:10.1051/0004-6361/202038888, S2CID 226976082
- Barnes, J. R.; et al. (2019-06-11). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 .
- Tanner, Angelle; Plavchan, Peter; Bryden, Geoff; Kennedy, Grant; Matrá, Luca; Cronin-Coltsmann, Patrick; Lowrance, Patrick; Henry, Todd; Riaz, Basmah; Gizis, John E.; Riedel, Adric; Choquet, Elodie (2020), "Herschel Observations of Disks around Late-type Stars", Publications of the Astronomical Society of the Pacific, 132 (1014): 084401, arXiv:2004.12597, Bibcode:2020PASP..132h4401T, doi:10.1088/1538-3873/ab895f, S2CID 216553868