Misplaced Pages

Heterodyne detection: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 03:56, 16 June 2006 editBamse (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers25,441 edits link de← Previous edit Revision as of 08:26, 6 April 2007 edit undoKohito (talk | contribs)1 editNo edit summaryNext edit →
Line 5: Line 5:
Let the electric field of the received signal be Let the electric field of the received signal be


:<math>E_\mathrm{sig}\cos(\omega_\mathrm\mathrm{sig}+\varphi)\,</math> :<math>E_\mathrm{sig}\cos(\omega_\mathrm\mathrm{sig}t+\varphi)\,</math>


and that of the local oscillator be and that of the local oscillator be


:<math>E_\mathrm{LO}\cos(\omega_\mathrm{LO}).\,</math> :<math>E_\mathrm{LO}\cos(\omega_\mathrm{LO}t).\,</math>


For simplicity, assume that the output of the detector ''I'' is proportional to the square of the amplitude: For simplicity, assume that the output of the detector ''I'' is proportional to the square of the amplitude:

Revision as of 08:26, 6 April 2007

Heterodyne detection is a method of detecting radiation by non-linear mixing with radiation of a reference frequency. It is commonly used in telecommunications and astronomy for detecting and analysing signals.

The radiation in question is most commonly either radio waves (see superheterodyne receiver) or light (see interferometry). The reference radiation is known as the local oscillator. The signal and the local oscillator are superimposed at a mixer. The mixer, which is commonly a (photo-)diode, has a non-linear response to the amplitude, that is, at least part of the output is proportional to the square of the input.

Let the electric field of the received signal be

E s i g cos ( ω s i g t + φ ) {\displaystyle E_{\mathrm {sig} }\cos(\omega _{\mathrm {\mathrm {sig} } }t+\varphi )\,}

and that of the local oscillator be

E L O cos ( ω L O t ) . {\displaystyle E_{\mathrm {LO} }\cos(\omega _{\mathrm {LO} }t).\,}

For simplicity, assume that the output of the detector I is proportional to the square of the amplitude:

I ( E s i g cos ( ω s i g t + φ ) + E L O cos ( ω L O t ) ) 2 {\displaystyle I\propto \left(E_{\mathrm {sig} }\cos(\omega _{\mathrm {sig} }t+\varphi )+E_{\mathrm {LO} }\cos(\omega _{\mathrm {LO} }t)\right)^{2}}
= E s i g 2 ( 1 / 2 ) ( 1 + cos ( 2 ω s i g t + 2 φ ) ) {\displaystyle =E_{\mathrm {sig} }^{2}(1/2)\left(1+\cos(2\omega _{\mathrm {sig} }t+2\varphi )\right)}
+ E L O 2 ( 1 / 2 ) ( 1 + cos ( 2 ω L O t ) {\displaystyle +E_{\mathrm {LO} }^{2}(1/2)(1+\cos(2\omega _{\mathrm {LO} }t)}
+ E s i g E L O [ cos ( ( ω s i g + ω L O ) t + φ ) + cos ( ( ω s i g ω L O ) t + φ ) ] . {\displaystyle +E_{\mathrm {sig} }E_{\mathrm {LO} }\left.}

The output has high frequency ( 2 ω s i g {\displaystyle 2\omega _{\mathrm {sig} }} and 2 ω L O {\displaystyle 2\omega _{\mathrm {LO} }} ) and constant components. In heterodyne detection, the high frequency components and usually the constant components are filtered out, leaving the two intermediate (beat) frequencies at ω s i g + ω L O {\displaystyle \omega _{\mathrm {sig} }+\omega _{\mathrm {LO} }} and ω s i g ω L O {\displaystyle \omega _{\mathrm {sig} }-\omega _{\mathrm {LO} }} . The amplitude of these last components is proportional to the amplitude of the signal radiation. With appropriate signal analysis the phase of the signal can be recovered as well.

See also

Category: