Revision as of 13:37, 22 May 2023 editCalle Cool (talk | contribs)Extended confirmed users809 edits .png -> .svg← Previous edit | Latest revision as of 15:18, 20 May 2024 edit undoUhooep (talk | contribs)Extended confirmed users30,831 editsm wl | ||
Line 68: | Line 68: | ||
{{refbegin}} | {{refbegin}} | ||
* {{cite journal | vauthors = Segel GB, Woodlock TJ, Murant FG, Lichtman MA | title = Photoinhibition of 2-amino-2-carboxybicycloheptane transport by O-diazoacetyl-L-serine. An initial step in identifying the L-system amino acid transporter | journal = The Journal of Biological Chemistry | volume = 264 | issue = 28 | pages = 16399–402 | date = October 1989 | doi = 10.1016/S0021-9258(19)84720-8 | pmid = 2789219 | doi-access = free }} | * {{cite journal | vauthors = Segel GB, Woodlock TJ, Murant FG, Lichtman MA | title = Photoinhibition of 2-amino-2-carboxybicycloheptane transport by O-diazoacetyl-L-serine. An initial step in identifying the L-system amino acid transporter | journal = The Journal of Biological Chemistry | volume = 264 | issue = 28 | pages = 16399–402 | date = October 1989 | doi = 10.1016/S0021-9258(19)84720-8 | pmid = 2789219 | doi-access = free }} | ||
* {{cite journal | vauthors = Hull RL, Zraika S, Udayasankar J, Kisilevsky R, Szarek WA, Wight TN, Kahn SE | title = Inhibition of glycosaminoglycan synthesis and protein glycosylation with WAS-406 and azaserine result in reduced islet amyloid formation in vitro | journal = American Journal of Physiology. Cell Physiology | volume = 293 | issue = 5 | pages = C1586–93 | date = November 2007 | pmid = 17804609 | pmc = 2365901 | doi = 10.1152/ajpcell.00208.2007 }} | * {{cite journal | vauthors = Hull RL, Zraika S, Udayasankar J, Kisilevsky R, Szarek WA, Wight TN, ] | title = Inhibition of glycosaminoglycan synthesis and protein glycosylation with WAS-406 and azaserine result in reduced islet amyloid formation in vitro | journal = American Journal of Physiology. Cell Physiology | volume = 293 | issue = 5 | pages = C1586–93 | date = November 2007 | pmid = 17804609 | pmc = 2365901 | doi = 10.1152/ajpcell.00208.2007 }} | ||
* {{cite journal | vauthors = Wada K, Hiratake J, Irie M, Okada T, Yamada C, Kumagai H, Suzuki H, Fukuyama K | title = Crystal structures of Escherichia coli gamma-glutamyltranspeptidase in complex with azaserine and acivicin: novel mechanistic implication for inhibition by glutamine antagonists | journal = Journal of Molecular Biology | volume = 380 | issue = 2 | pages = 361–72 | date = July 2008 | pmid = 18555071 | doi = 10.1016/j.jmb.2008.05.007 }} | * {{cite journal | vauthors = Wada K, Hiratake J, Irie M, Okada T, Yamada C, Kumagai H, Suzuki H, Fukuyama K | title = Crystal structures of Escherichia coli gamma-glutamyltranspeptidase in complex with azaserine and acivicin: novel mechanistic implication for inhibition by glutamine antagonists | journal = Journal of Molecular Biology | volume = 380 | issue = 2 | pages = 361–72 | date = July 2008 | pmid = 18555071 | doi = 10.1016/j.jmb.2008.05.007 }} | ||
* {{cite journal | vauthors = Rajapakse AG, Ming XF, Carvas JM, Yang Z | title = The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects | journal = American Journal of Physiology. Heart and Circulatory Physiology | volume = 296 | issue = 3 | pages = H815–22 | date = March 2009 | pmid = 19136606 | doi = 10.1152/ajpheart.00756.2008 | url = http://doc.rero.ch/record/12007/files/yang_hbi.pdf}} | * {{cite journal | vauthors = Rajapakse AG, Ming XF, Carvas JM, Yang Z | title = The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects | journal = American Journal of Physiology. Heart and Circulatory Physiology | volume = 296 | issue = 3 | pages = H815–22 | date = March 2009 | pmid = 19136606 | doi = 10.1152/ajpheart.00756.2008 | url = http://doc.rero.ch/record/12007/files/yang_hbi.pdf}} |
Latest revision as of 15:18, 20 May 2024
Chemical compound Pharmaceutical compoundClinical data | |
---|---|
ATC code |
|
Identifiers | |
IUPAC name
| |
CAS Number | |
PubChem CID | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.003.692 |
Chemical and physical data | |
Formula | C5H7N3O4 |
Molar mass | 173.128 g·mol |
3D model (JSmol) | |
SMILES
| |
InChI
| |
(what is this?) (verify) |
Azaserine is a naturally occurring serine derivative diazo compound with antineoplastic and antibiotic properties deriving from its action as a purinergic antagonist and structural similarity to glutamine. Azaserine acts by competitively inhibiting glutamine amidotransferase, a key enzyme responsible for glutamine metabolism.
Mechanism of Action
Azaserine inhibits the rate limiting step of the metabolic hexosamine pathway and irreversibly inhibits γ-glutamyltransferase by acting directly at the substrate-binding pocket. Independent of hexosamine pathway inhibition, azaserine has been demonstrated to protect against hyperglycemic endothelial damage by elevating serum concentrations of manganese-superoxide dismutase, directly reducing the concentration of reactive oxygen species.
Azaserine also downregulates the expression of VCAM-1 and ICAM-1 in response to TNF-α, and research indicates that it may have potential in identifying the L-leucine-favoring system transporter in human T-lymphocytes.
Properties
Azaserine has a solubility of 50 mg/mL in water, a melting point of 146-162 °C, a vapor pressure of 1.53x10mmHg at 25 °C, and decomposes before melting.
References
- Segel GB, Woodlock TJ, Murant FG, Lichtman MA (October 1989). "Photoinhibition of 2-amino-2-carboxybicyclo[2,2,1]heptane transport by O-diazoacetyl-L-serine. An initial step in identifying the L-system amino acid transporter". The Journal of Biological Chemistry. 264 (28): 16399–402. doi:10.1016/S0021-9258(19)84720-8. PMID 2789219.
- Hull RL, Zraika S, Udayasankar J, Kisilevsky R, Szarek WA, Wight TN, Kahn SE (November 2007). "Inhibition of glycosaminoglycan synthesis and protein glycosylation with WAS-406 and azaserine result in reduced islet amyloid formation in vitro". American Journal of Physiology. Cell Physiology. 293 (5): C1586–93. doi:10.1152/ajpcell.00208.2007. PMC 2365901. PMID 17804609.
- Wada K, Hiratake J, Irie M, Okada T, Yamada C, Kumagai H, Suzuki H, Fukuyama K (July 2008). "Crystal structures of Escherichia coli gamma-glutamyltranspeptidase in complex with azaserine and acivicin: novel mechanistic implication for inhibition by glutamine antagonists". Journal of Molecular Biology. 380 (2): 361–72. doi:10.1016/j.jmb.2008.05.007. PMID 18555071.
- Rajapakse AG, Ming XF, Carvas JM, Yang Z (March 2009). "The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects" (PDF). American Journal of Physiology. Heart and Circulatory Physiology. 296 (3): H815–22. doi:10.1152/ajpheart.00756.2008. PMID 19136606.
- Lebedeva ZI, Kabanova EA, Berezov TT (March 1986). "6-diazo-5-oxo-L-norleucine and azaserine as affinity inhibitors of glutamin(asparagin)ase". Biochemistry International. 12 (3): 413–20. PMID 3707592.