Revision as of 20:56, 20 October 2011 editKinu (talk | contribs)Edit filter managers, Autopatrolled, Administrators64,997 edits Undo; archive, do not edit.← Previous edit | Latest revision as of 20:40, 22 November 2024 edit undoClueBot III (talk | contribs)Bots1,381,086 editsm Archiving 44 discussions from Talk:Continuum hypothesis. (BOT) | ||
Line 235: | Line 235: | ||
:I just read the translation again, and although Hilbert does mention the problem of well-ordering the real numbers, the standard understanding is that "Hilbert's first problem" is the continuum hypothesis. See the refs by Foreman and Martin in this article, for example. — Carl <small>(] · ])</small> 17:03, 27 November 2007 (UTC) | :I just read the translation again, and although Hilbert does mention the problem of well-ordering the real numbers, the standard understanding is that "Hilbert's first problem" is the continuum hypothesis. See the refs by Foreman and Martin in this article, for example. — Carl <small>(] · ])</small> 17:03, 27 November 2007 (UTC) | ||
::I know, that '''is''' the standard understanding of Hilberts first problem - and I don´t want to try to alter that. I just wanted to point out that the original formulation did involve two, very deep indeed, questions, both of (CH and to a much lesser extent AC) which are still controversial. ] (]) 18:29, 27 November 2007 (UTC) | ::I know, that '''is''' the standard understanding of Hilberts first problem - and I don´t want to try to alter that. I just wanted to point out that the original formulation did involve two, very deep indeed, questions, both of (CH and to a much lesser extent AC) which are still controversial. ] (]) 18:29, 27 November 2007 (UTC) | ||
== who believes CH or ~CH ? == | |||
I don't entirely agree with the following passage: | |||
Generally speaking, mathematicians who favor a "rich" and "large" | |||
] of sets are against CH, while those | |||
favoring a "neat" and "controllable" universe favor CH. | |||
See the Maddy reference I added, page 500, the sections entitled | |||
''Not-CH is restrictive (in favor)'' and ''Modern forcing (in favor)''. | |||
I'll try to come up with some wording that's not too awkward, illustrating | |||
the historical view reported in the existing Wiki article, while also pointing out | |||
that between models having all the same reals, it's the ones with more | |||
sets of reals that are more likely to satisfy CH. --] | |||
My attempt is now in place ] 05:04, 27 Jun 2005 (UTC) | |||
User Martindowd has been arguing that the truth of CH, indeed V=L, | |||
should be taken more seriously. He suggests adding the following | |||
at the end of the second paragraph of the "Arguments for and against CH" | |||
section of the Continuum hypothesis page. If you have any opinion | |||
on this, please let me know. | |||
Recently, arguments have appeared that this view should be re-evaluated, | |||
and that there are arguments in favor of both (Dowd 2011). | |||
Dowd, Martin (2011) "Some New Axioms for Set Theory", | |||
http://www.ijpam.eu/contents/2011-66-2/1/1.pdf ] (]) 15:04, 21 September 2011 (UTC) | |||
:See ]. ] (]) 17:34, 21 September 2011 (UTC) | |||
::This is a related topic; but the paper in question takes a new approach.] (]) 17:52, 24 September 2011 (UTC) | |||
=== Did Cantor believe CH? === | |||
I would add to Trovatore's point that it is questionable (as stated on the page) that Cantor himself believed CH. Did he not alternate back and forth during his manic (and depressive) phases, sometimes believing CH, sometimes believing ~CH? See the BBC TV documentary "Dangerous Knowledge" ]. 16 June 2008. <small>—Preceding ] was added at 22:37, 16 June 2008 (UTC)</small><!--Template:Undated--> <!--Autosigned by SineBot--> | |||
:I'd never heard that he ever believed ¬CH, only that he sometimes despaired of ever being able to prove CH. Interesting if true, though. What did the documentary say exactly? Has anyone seen this claim in any source available online or at the library? --] (]) 22:53, 16 June 2008 (UTC) | |||
::I've got the programme on tape, and I'll look it up and report back. Great programme, BTW. --] <sup>]</sup> 18:08, 24 August 2008 (UTC) | |||
::The programme ''hints'' that Cantor ''wanted'' to believe in CH -- but it is not explicit. As for Cantor's alternating between CH and ¬CH, that was in reference to him thinking that he found a proof of CH at times and ¬CH at other times. Proof and belief are not quite the same.--] <sup>]</sup> 08:25, 25 August 2008 (UTC) | |||
:::In 1978 Cantor wrote in "Ein Beitrag zur Mannigfaltigkeitslehre" (A contribution to the theory of manifolds) | |||
:::: Durch ein Inductionsverfahren, auf dessen Darstellung wir hier nicht näher eingehen, wird der Satz nahe gebracht, daß die Anzahl der nach diesem Eintheilungsprinzip sich ergebenden Klassen eine endliche, und zwar, daß sie gleich zwei ist Eine genaue Untersuchung dieser Frage verschieben wir auf eine spätere Gelegenheit. | |||
:::: Free translation: An induction process/method, which we will not present here in detail, suggests the theorem that the number of classes which result from the classification principle is finite, and in fact 2. We will resume this investigation at a later moment. | |||
:::I think this makes it clear that he thought he could work out a proof of CH. --] (]) 19:42, 9 May 2011 (UTC) | |||
:::::<small>Little-known fact: When he wrote the above, he was blasting ''Stayin' Alive'' from his boombox. Could have interfered with his concentration. --] (]) 20:24, 9 May 2011 (UTC) </small> | |||
::::::<small>Indeed, ], top of the charts in 1978. I meant </small>1878<small> of course. --] (]) 15:17, 30 July 2011 (UTC)</small> | |||
== Investigating the continuum hypothesis == | |||
I've removed this section: | |||
:''If a set ''S'' were found that disproved the continuum hypothesis, it would be impossible to make a one-to-one correspondence between ''S'' and the set of integers, because there would always be elements of set ''S'' that were "left over". Similarly, it would be impossible to make a one-to-one correspondence between ''S'' and the set of real numbers, because there would always be real numbers that were "left over".'' | |||
It's a good thing to add some intuition, but I don't know that this passage helped much. CH isn't about whether such a set ''S'' can be ''found'' in any ordinary sense, but just about whether one ''exists''. --] 21:12, 22 October 2005 (UTC) | |||
Let me add this thought: | |||
Since CH cannot be disproven, a set that denies it cannot be found. This doesn't mean it does not exist, but we're close :-) | |||
] (]) 06:01, 17 May 2008 (UTC) | |||
:CH cannot be disproved ''from ZFC''. No, I'm afraid that's not particularly close to settling the issue. --] (]) 08:40, 17 May 2008 (UTC) | |||
== Any set to demonstrate CH? == | |||
The undecidability of CH begs the question: If there is a cardinality between <math>\aleph_0</math> and <math>2^{\aleph_0}</math>, then what sets might there be that have this cardinality? | |||
In other words, is there any known set that is larger than <math>\aleph_0</math>, but such that you need to set the truth value of CH to determine whether or not it's equivalent to continuum? | |||
Moreover, is there any evidence pointing to the existence or non-existence of such a set, or whether it would be possible to find it if it does exist? -- ] (]) 16:35, 28 February 2008 (UTC) | |||
:Well, you have to keep in mind here the distinction between a set and a definition of a set. Think of sets as collections of things just lumped together at random, not necessarily in accordance with any ''rule''. Then it might happen, just by accident, that there's some rule such that everything in the set satisfies the rule, and everything outside the set does not -- in that case we say that the set is "definable", but you ''still'' can't identify the set with its definition; that way lies all sorts of trouble (ask Frege). | |||
:So rephrasing your question -- is there a ''definition'' for a set of reals such that ZFC neither proves nor disproves that the set of all reals satisfying the definition, has cardinality <math>2^{\aleph_0}</math> (but does prove that the set is uncountable)? Sure, but possibly not a terriby interesting definition. Something like "the first <math>\aleph_2</math> ordinal-definable reals in the natural wellorder on OD, or all the reals if there are not <math>\aleph_2</math> OD reals". --] (]) 18:07, 28 February 2008 (UTC) | |||
::Also, <math>L_{\omega_1} \cap \mathcal{P}(\omega)</math> is the set of all subsets of the natural numbers (sometimes identified with the reals) which are constructed (see ]) before the first uncountable stage. It has cardinality <math>\aleph_1</math>, I believe. ] (]) 08:34, 29 February 2008 (UTC) | |||
:::No, not unless <math>\aleph_1^L=\aleph_1</math> (which it doesn't, of course). --] (]) 18:42, 29 February 2008 (UTC) | |||
::::To Trovatore: Thanks for the correction. ] (]) 12:03, 1 March 2008 (UTC) | |||
:The easiest example of a set that has cardinality <math>\aleph_1</math> is the set of all countable ordinals (where everything is relativized to a fixed model of ZFC). Each countable ordinal can be viewed as a linear order on the natural numbers and thus an element of <math>2^\omega</math>. So if you use AC to choose for each countable ordinal a single real encoding that ordinal, you will obtain a set that has cardinality <math>\aleph_1</math>, but will not have the cardinality of the continuum unless CH holds. — Carl <small>(] · ])</small> 15:03, 1 March 2008 (UTC) | |||
::Quoting Carl (an inch above) "Each countable ordinal can be viewed as a linear order on the natural numbers..." Is the converse statement "Each linear order on the natural numbers can be viewed as a countable ordinal" necesarilly true? If yes, is there then a one-to-one correspondence between linear orders on the natural numbers and countable ordinals? Or is that last statement perhaps equivalent to the CH? (When thinking of the Cantor-Bernstein theorem, it might be that way. (I'm just speculating now of course.)) The number of orderings of a finite number n is n!. Can one by a naive extension of the factorial function say that CH can be "rephrased" as the statement <math>\omega</math>! = <math>\omega_1</math>? ] (]) 17:40, 18 May 2008 (UTC) | |||
:::Taking the last question first: Yes, that's a reasonable way of putting it, though not quite by the reasoning you used; the reasoning has some flaws but it's close enough to see that the factorial of <math>\aleph_0</math> (not a term that's used much but it's pretty clear what it means) is <math>2^{\aleph_0}</math>. | |||
:::Getting more into the details, more specifically, not ''every'' linear order of the natural numbers corresponds to a countable ordinal, but only the ]s. To a wellordering of the naturals you associate a unique countable ordinal, namely the length of the wellordering. And going the other direction, any (infinite) countable ordinal can be represented as the length of some wellordering--but not a ''unique'' one; there will be lots of different wellorderings with the same length. So what this gets us is that there are ''at least'' as many wellorderings of the naturals as there are countable ordinals (strictly speaking, infinite countable ordinals, but the finite ones are easily accounted for). It doesn't tell us there aren't ''more''. --] (]) 18:20, 18 May 2008 (UTC) | |||
::::Interesting! To quote yourself Trovatore, "It's a good thing to add some intuition...", but you are always very (too?;) careful to make intuitive arguments close to precise mathematical statements. I believe that the above reply does shed additional light on what the CH actually ''is'' and goes beyond intuition. (It actually sounds like a statement of ZF(C) in my ears, making it mathematics.) I also think that som revised form of it may qualify for the main article as an example of what CH and its negation would imply. Most people who knows what a one-to-one correspondence will know what a wellordering is.] (]) 22:34, 20 May 2008 (UTC) | |||
== Independence of CH from large cardinal axioms == | |||
:''So far, CH appears to be independent of all known '']s'' in the context of ZFC.'' | |||
But in the context of ZF, j:V into V refutes choice (according to the article on ]s anyway), and GCH implies it (according to this article). So then j:V into V would refute GCH. Right? --] (]) 15:58, 27 May 2008 (UTC) | |||
:It may be that J:V into V refutes ZF.] (]) 16:29, 27 May 2008 (UTC) | |||
:Well, sure. It may be that any large cardinal axiom refutes ZF. But so far no such refutation is known. Nor is any proof, refutation, or independence of CH or GCH from any large cardinal axiom known, other than this one. Is that correct? --] (]) 02:36, 28 May 2008 (UTC) | |||
::The ''Generalized'' Continuum Hypothesis is much stronger than the Continuum Hypothesis. So many propositions may be consistent with CH, but not with GCH. Reinhardt's cardinal cannot exist in ZFC so the sentence in question does not apply to it. ] (]) 06:37, 28 May 2008 (UTC) | |||
:::Sure. And I did say "in the context of ZF" and "GCH". I guess my implicit assertion is that whatever makes the sentence in question worth mentioning makes this worth mentioning too, assuming I've stated the situation correctly. --] (]) 10:24, 28 May 2008 (UTC) | |||
:(To ] ) Not quite. A favorable solution would be to show that the consistency of some (axiom of choice) large cardinal implies the consistency of j:V into V, minus AC. Incidentally, GCH has more than one formulations, which are equivalent in the presence of AC, but not necessarily so in the absence of it. One of them implies AC. Therefore, I think, it is more correct to say that one form of GCH implies AC. ] (]) 06:45, 28 May 2008 (UTC) | |||
::To Kope: See ] for a proof that GCH implies AC. This establishes that there is only one version of GCH, even in ZF (without choice being assumed otherwise). ] (]) 06:59, 28 May 2008 (UTC) | |||
:::But CH doesn't, so might it have inequivalent formulations in the absence of AC? Is this also worth mentioning? --] (]) 10:24, 28 May 2008 (UTC) | |||
:::: Yep. The following are not equivalent in the absence of AC: | |||
::::* <math>2^{\aleph_0}=\aleph_1</math>, <math>2^{\aleph_0} \leq \aleph_1</math>, <math>2^{\aleph_0}<\aleph_2</math> | |||
::::* There is no cardinal ''m'' such that <math>\aleph_0 < m < 2^{\aleph_0}</math> | |||
::::* <math>2^{\aleph_0} \not > \aleph_1</math> | |||
::::* <math>2^{\aleph_0} \not \geq \aleph_2</math> | |||
::::The first two are considered somewhat standard formulations of CH; I only included the latter two so that it's clear they are all the same under the axiom of choice. — ] ] 17:22, 28 May 2008 (UTC) | |||
::::Hmmm. In ZFU (ZF with ]), AH (aka '''Aleph Hypothesis''') <math>\left (2^{\aleph_\alpha}=\aleph_{\alpha+1} \right )</math> does not imply GCH (if ''X'' is an infinite set, there is no ''Y'' such that <math>X < Y < \mathcal{P}(X)</math> (with "<" in the sense of cardinality)). (Source: my mother's book ''Set Theory for the Mathematician'', I believe). I'm sure that fact that PW (the power set of a well-ordered set can be well-ordered, a trivial consequence of AH) does not imply AC in ZFU, although it does in ZF, is in both editions of my parents' book ''Equivalents of the Axiom of Choice''. — ] ] 17:40, 28 May 2008 (UTC) | |||
:::::However, see ] — if the ur-elements form a set which is ] with a ] (a set whose ] contains no ur-elements), then I believe that ZFU+AH would imply AC and thus GCH. ] (]) 14:08, 29 May 2008 (UTC) | |||
::::::Yes, I believe that's correct. The proof escapes me at the moment.... — ] ] 14:34, 29 May 2008 (UTC) | |||
:::::::Consider the class of pure sets. It satifies ZF+AH. Since bijections between pure sets are themselves pure sets, it has the same aleph numbers as the original model (which included urelements). So the class of pure sets satifies AC. Thus the pure set which is equinumerous with the set of urelements can be well ordered. Thus the set of urelements can be well ordered. Then do induction on the rank α to show that ''V''<sub>α</sub> can be well ordered. So the universe satisfies AC. So it satisfies GCH. OK? ] (]) 15:31, 29 May 2008 (UTC) | |||
=== Forms of CH without AC === | |||
The form <math>\neg \exist m \; \aleph_0 < m < 2^{\aleph_0}</math> makes the continuum hypothesis meaningful even if the continuum isn't well-ordered. The article states: | |||
:''The continuum hypothesis is closely related to many statements in ], point set ] and ]. As a result of its independence, many substantial ]s in those fields have subsequently been shown to be independent as well.'' | |||
Do we have any examples which would make sense without AC, and would they depend on the form of CH? Also, on the other side of the coin, my understanding is that there could be no purely arithmetic consequences, roughly because ZF + V=L proves CH anyway (and even GCH), and relativising everything to L makes no difference to (first-order) arithmetic. If correct, I believe this is worth stating. Also, the article states: | |||
:''Assuming the ], there is a smallest cardinal number <math>\aleph_1</math> greater than <math>\aleph_0</math>, and the continuum hypothesis is in turn equivalent to the equality <math>2^{\aleph_0} = \aleph_1.</math>'' | |||
The "assuming the axiom of choice" bit should really attach to the "in turn equivalent to", because even from the axioms ZF without AC, aleph_1 exists and is an immediate successor of aleph_0, right? --] (]) 02:39, 1 June 2008 (UTC) | |||
:Without AC, there could be other cardinals which are larger than <math>\aleph_0</math> but incomparable with <math>\aleph_1</math>, for example, the cardinality of a set which is the union of natural numbers with a ] infinite set. In this case, neither the new cardinal nor <math>\aleph_1</math> can be said to be '''the''' smallest cardinal greater than <math>\aleph_0</math>. ] (]) 06:38, 1 June 2008 (UTC) | |||
== Original Sources == | |||
I notice there aren't any references to Cantor's original writings. I'll try to dig some up, but has anyone seen any English translated letters, etc? ] (]) 00:03, 3 August 2008 (UTC) | |||
== Hilbert's first has nothing to do with ZFC per se == | |||
This statement is revealing a transfinite-platonic bias. without a formalization like ZFC, it is not clear that it is possible to give a meaning to the statement that the continuum even ''has'' an ordinal size. Before Cantor insisted it was true, an infinite collection like the set of real numbers was not considered to have a definite size, let alone a definite ordinal size, and indeed, after Cohen, it is again a widespread point of view that the continuum does not have a definite size as an ordinal. | |||
The idea that the set of all real numbers has definite properties in a platonic realm can be classified as a type of "transfinite platonism", which is just what platonism usually means nowadays. But transfinite Platonism can be logically separated from "computational platonism" (I made that up, but it needs a name)--- the position that all computer programs either halt or do not halt. The second position is what people mean by platonism in practice--- that the results of computations with symbols have a meaning, and questions about their outcome have a truth value. it was the position of Paul Cohen, shared by most mathematicians, that all questions about the integers/computer-programs are decided by a strong enough axiom system, which is a way of saying that they have a truth value in an axiom-system independent way. | |||
But you can believe this, and still be a formalist regarding transfinite set theory. The position might be called "formalist", but "formalist" conflates two notions: "formalist regarding uncountable ordinals and sets the size of the continuum" and "formalist regarding countable infinity". A "formalist regarding countable infinity" would, for example, consider a nonstandard models of Peano arithmetic to be just as "true" a model of the integers as the standard model. Such a formalist would believe that some statements about diophantine equations like Fermat's Last Theorem, are undecidable in an absolute sense. This is the type of straw-man formalist that people argue against. | |||
A "formalist regarding uncountable ordinals" on the other hand, would say that the truth value of the 3N+1 conjecture is well defined, but statements like the continuum hypothesis have no truth value except relative to an axiom system. This is the type of formalism which the forcing models foist upon you. If you accept this philosophy, which many people do, then you would not regard the continuum hypothesis as independent of ZFC. | |||
This is the philosophical position which Cohen alludes to in his book, hopefully stated clearly enough there so that this exposition will be recognized as a clarification. I have been trying to figure out how to say it clearly for a while.] (]) 17:22, 24 August 2008 (UTC) | |||
:Hilbert wanted a proof of the continuum hypothesis (he doesn't seem to have explicitly countenanced a refutation). A proof from what axioms, I'm afraid he didn't really say. But whatever they were, they certainly weren't the axioms of ZFC, because his speech was in 1900, and ZFC wasn't formulated until a couple of decades later. | |||
:As for the situation ''today'', it is certainly true that there are folks who are realists about the naturals but formalists beyond that, and that they mostly will not consider CH to have a well-defined truth value outside of its provability or refutability in some formal theory. There is still, however, no clear reason that that formal theory ought to be ZFC. --] (]) 01:06, 25 August 2008 (UTC) | |||
:: I see your point, thanks for clarifying. But ZFC is not arbitrary--- it's sort of natural--- you have the function axiom, and everything else just builds up big ordinals in sequence. It's like Peano arithmetic, anything else is going to be roughly similar. Hilbert had formalized logic in mind, and probably knew approximately what a formalized set theory would look like, and I think he meant ZFC. But I defer to someone who actually read more Hilbert.] (]) 02:51, 25 August 2008 (UTC) | |||
:::In one sense, you're right, ZFC is not arbitrary — all its axioms are well-motivated (in retrospect) by the picture of the ]. What's arbitrary is cutting off precisely at the strength of ZFC, no less and no more. | |||
:::Now, the most natural and well-accepted enhancements to ZFC, the ]s, don't settle CH either, or at least the ones we know so far don't settle it. It doesn't really follow that we won't ever find ones that do (though they would have to be of a somewhat different character from the currently known ones). | |||
:::On the other hand, there are extensions to ZFC that someone or other has considered natural at some point that ''do'' settle CH. For example the ] settles it positively, whereas the ] settles it negatively. The big difference is, I'm afraid, a Platonistic one: there's not as compelling a reason to believe that either of these is true (and indeed there are extremely good reasons to believe that the axiom of constructibility is false). | |||
:::The most interesting current line of inquiry into the question is one started by Woodin, who has a subtle and difficult argument that, if accepted, would imply that CH is false. --] (]) 03:49, 25 August 2008 (UTC) | |||
:::: You like repeating the party line! But of course, you know that I think it's rubbishy. And Woodin's approach is neither subtle or difficult. It's just determinacy.] (]) 06:30, 25 August 2008 (UTC) | |||
::::: If you truly understand Woodin's approach, I'd be happy if you'd teach it to me; I know only some vague generalities about it. But it's certainly not "just determinacy". In fact I don't see that it has that much to do with determinacy, directly. What he claims is that he has something ''analogous'' to determinacy, one level up; that just as ] "settles all natural questions" (whatever that means exactly—note that the quotes are not intended to attribute the phrase to Woodin) about <math>H(\aleph_1)</math>, his approach similarly "should" settle all natural questions about <math>H(\aleph_2)</math> (one of which is CH).Now, just by the way, "just" determinacy can get ''extremely'' difficult and subtle. But Ω-logic is still quite another thing. --] (]) 06:44, 25 August 2008 (UTC) | |||
:::::: I thought he was just repeating determinacy, I guess I'm totally wrong. I didn't read his paper very closely at all.] (]) 10:31, 25 August 2008 (UTC) | |||
::::::: I know (from a very superficial look at) 'The Higher Infinite' that there were some (at the time of their discovery) unexpected connections between large cardinal axioms and various versions of the axiom of determinacy, for what that's worth. ] (]) 14:49, 25 August 2008 (UTC) | |||
(deindent) I am pretty ignorant about determinacy--- I only have only the most superficial heresay knowledge, and no clear understanding. But I have a somewhat negative opinion anyway, probably unjustified. | |||
:: Well, then just a friendly suggestion: refrain from making categorical statements that Woodin's approach is 'just determinacy' and from accusing people of 'just repeating the party line'. It just makes you look ignorant. <small>—Preceding ] comment added by ] (]) 23:32, 26 August 2008 (UTC)</small><!-- Template:UnsignedIP --> <!--Autosigned by SineBot--> | |||
::: I ''am'' ignorant. So is everybody else. That's life.] (]) 01:53, 27 August 2008 (UTC) | |||
When I think about the continuum hypothesis, it is linked in my mind to the notion of measure and probability--- the reason that many people have intuitions about the cardinality of the real numbers is that it is consistent to talk about randomly choosing real numbers in a way that is different from randomly choosing integers or elements of a well ordered set. You can't pick an integer uniformly at random--- the concept doesn't make sense. You need a probability distribution, and certain integers are more likely than others. The same goes for any countable ordinal--- you need to weight different positions with different probability. | |||
But for the interval , the notion of picking a number at random seems to be perfectly well defined, because you can roll dice to find each digit in sucession. This converges to a real number, and any property of that number that has probability zero is false. If a random number can be thought of as an element of the mathematical universe, with the property of belonging or not belonging to any previously specified set, it means that this previously specified set has a well defined Lebesgue measure. So not only is the continuum hypothesis false with random reals, it is meaningless, because the real numbers can't be well ordered. Any ordinal, no matter how large, can be imbedded in the reals by inductively mapping each successive element into at random, and the probability of picking the same real twice is always zero (the last statement is only self consistently true, it's true in a countable model). | |||
Making this precise is the job of forcing, which, given the political situation in mathematics, phrases everything in terms of the picking process, although at the end it talks about "random reals". But a random real number is an obviously consistent idea, even though it is incompatible with choice. | |||
So when I look at post-forcing axioms like determinacy, I am always looking for the probability interpretation, and in this case I couldn't see it. The determinacy axiom, as I heard it, was exciting because it had a completely different character--- it asserted something about infinite sets that somebody thought was intuitively consistent (I don't know why, but they turned out to be right, so they must have had a good idea). But the justification for this for those with a formal view of higher infinity is that a large cardinal axiom proved that it is equiconsistent with set theory. So determinacy, as far as theorems about integers are concerned, is a moderate large cardinal axiom, and is not as interesting as a completely new axiom (although Cohen's "article of faith" says there are not going to be any consistent new axioms that are not equiconsistent by virtue of a large enough cardinal). So a superficial glance at Woodin's article was disappointing for me, because it didn't give a perspective which was probabalistic. But that's a very self-centered point of view, so I'll give it another shot.] (]) 17:51, 26 August 2008 (UTC) | |||
== Need references == | |||
Edited out a minor error: ZFC stands for "Zermelo-Frankel with the axiom of choice", whereas ZF is simply "Zermelo-frankel". Would be nice to see some superscript references in this article, I'm afraid I don't know how to do that yet. ] (]) 00:41, 1 October 2008 (UTC) | |||
:See ] for instructions on how to put in references. ] (]) 01:39, 1 October 2008 (UTC) | |||
== Natural numbers? == | |||
''Cantor introduced the concept of cardinality to compare the sizes of infinite sets, and he gave two proofs that the cardinality of the set of integers is strictly smaller than that of the set of real numbers. His proofs, however, give no indication of the extent to which the cardinality of the natural numbers is less than that of the real numbers.'' | |||
Shouldn't ''natural'' numbers be ''rational'' numbers? Since the natural numbers is a subset of the integers, it's quite obvious that the cardinality of the natural numbers isn't greater than the integers. <span style="font-size: smaller;" class="autosigned">—Preceding ] comment added by ] (]) 23:21, 20 January 2009 (UTC)</span><!-- Template:UnsignedIP --> <!--Autosigned by SineBot--> | |||
:The passage seems to be written for readers who know without having to think about it that the cardinality of the naturals is the ''same'' as that of the integers (or, possibly, who use the word ''integer'' to mean ''natural number'', a convention used informally by some set theorists). Since not all readers will fall into this category, we should probably change both occurrences to be the same. The question is, should we say integers, or naturals? ''Integers'' sounds better (the repetition of ''natural numbers'' could be a bit stilted) but ''natural numbers'' is more likely to be strictly historically accurate when talking about what Cantor strictly speaking proved. --] (]) 23:48, 20 January 2009 (UTC) | |||
== What could be 2^aleph_0 without the CH? == | |||
I think the article should include a section saying which alephs ''could'' be <math>2^{\aleph_0}\,</math> (and <math>2^{\aleph_{\alpha}}\,</math>) in the case CH is undecided. The article about the ] has some indications about this (for example, it could be that <math>2^{\aleph_0} = \aleph_{\omega + 42}\,</math>, but not <math>2^{\aleph_0} = \aleph_{\omega}\,</math>), but I think this article here is the proper place to a full analysis. And I have never seen an '''upper limit''' to <math>2^{\aleph_0}\,</math>; does it make sense if <math>2^{\aleph_0}\,</math> could be some monstrosity like <math>\aleph_{\omega_{\omega_{\omega}} + 42}\,</math>? ] (]) 19:11, 3 April 2009 (UTC) | |||
:Well, for a realist there is only one thing the continuum ''could'' be, which is precisely whatever it is. | |||
:But if you're asking what values are consistent with ZFC, that's precisely known: It can be any ], or any singular cardinal with uncountable ]. So yes, the value <math>\aleph_{\omega_{\omega_{\omega}} + 42}\,</math> is consistent with ZFC. | |||
:Of course one has to be a little careful how one states this. For example <math>\left(2^{\aleph_0}\right)^+</math> is a regular cardinal, and yet it is obviously not consistent with ZFC that <math>2^{\aleph_0}=\left(2^{\aleph_0}\right)^+</math>. I won't try to resolve this for you in this post; I'll leave you to puzzle over it a little while. --] (]) 19:22, 3 April 2009 (UTC) | |||
:: Since the article also talks about the ''denial'' of CH, I think it's proper to include in it the things that <math>2^{\aleph_0}\,</math> ''could'' be :-) Or, if we want to be precise, the article should list, within ZFC, which are the alphas for which we can prove that <math>\aleph_{\alpha} \ne 2^{\aleph_0}\,</math> | |||
:: For example, I think that it's impossible to prove that <math>2^{\aleph_0} \ne \aleph_{\alpha + n}\,</math> for any α < ω<sub>1</sub> and ''n > 0''. But what about <math>2^{\aleph_0} \ne \omega 2 \,</math>? <math>2^{\aleph_0} \ne \omega \times \alpha \,</math>? (BTW: maybe the article about ] should include a relation of the cf class-function to the +, . and ^ class-operations in the ordinal class). | |||
:: I take it that <math>2^{\aleph_0}\,</math> can't (obviously) be its own successor, but can we prove that <math>2^{\aleph_0} \ne \aleph_{2^{\aleph_0}}\,</math> or even <math>2^{\aleph_0} \ne \aleph_{2^{2^{\aleph_0}}}\,</math>? ] (]) 20:21, 3 April 2009 (UTC) | |||
:::I don't know that you've quite come to terms with the issue I was alluding to here. The problem with questions like "for what <math>\alpha\,\!</math> can we prove that the continuum is not <math>\aleph_\alpha</math>?" is that you're mixing object language and metalanguage. Questions about provability are in the metalanguage, whereas "for what <math>\alpha\,\!</math>?" is in object language. | |||
:::An example problem (not by any means the only problem): Some ordinals <math>\alpha\,\!</math> (even some ordinals less than ω<sub>1</sub> are not definable in the language of set theory. So in that case what does it mean to prove that the continuum is not <math>\aleph_\alpha</math>? By the most direct reading, you can't even get started, because you can't even ''state'' the claim that you're trying to prove. (And nevertheless, some of these ordinals ''are'' excluded, because they have cofinality ω, so we can't dismiss the issue either — it seems to mean something, but it's not obvious just what.) | |||
:::There ''are'' reasonable formulations that take care of the problem, but as I say, you have to be careful. I think you need to think about it some more before anything I say about it will make much sense. --] (]) 23:49, 3 April 2009 (UTC) | |||
::::I think proper formalism is that, given a model of ZFC, and an ordinal <math>\alpha</math> which is either a successor ordinal or has cofinality greater than <math>\omega</math>, then there is a model with the same ordinals and same cofinalities such that <math>2^{\aleph_0}=\aleph_\alpha</math>. (I'm not sure that's accurate, but it's close.) However, it is not consistent that <math>2^{\aleph_0}=\aleph_\alpha</math> and <math>\alpha</math> has countable cofinality. — ] ] 00:47, 4 April 2009 (UTC) | |||
::::As for <math>2^{\aleph_0} = \aleph_{2^{\aleph_0}}\,</math> or even <math>2^{\aleph_0} = \aleph_{2^{2^{\aleph_0}}}\,</math>, it doesn't make sense, as subscripts of ℵ are ordinals, and <math>2^{\aleph_0}</math> is a cardinal. If you use it to mean the initial ordinal corresponding to that cardinal, the first is consistent, but the second is not, by Cantor's theorem. The proof of the first is left as an exercise for the reader. — ] ] 00:52, 4 April 2009 (UTC) | |||
:::::Well, ''I'' know the answer, Arthur. I was trying to get Albamont to think through the definition-versus-denotation issue here. Until you do that, no answer to this question ''really'' makes sense. | |||
:::::Your formulation is indeed "close", but it has some problems. For example there isn't any (real) model, having the real ordinals, in which the continuum is larger than it is in ''V'', because there aren't any more real numbers to add. There is a model in the sense of a forcing extension, but that's a different thing. --] (]) 03:38, 4 April 2009 (UTC) | |||
::::::The reals that were added are pretty clearly new reals that just happen to not be in the smaller model... The difficulty is in the existence of generic filters over V. If you want, you can insist there are none. However, I've been told that the use of countable transitive models is out of vogue and forcing over V is "the way things are done" these days. — Carl <small>(] · ])</small> 03:17, 6 April 2009 (UTC) | |||
:::::::Forcing over ''V'' is indeed "the way things are done these days" — but that doesn't mean that any generic filters over ''V'' (for a nontrivial forcing notion) actually exist. You don't get any coherent ontology from the idea that they exist. Or at least I haven't been able to work out any way that you can, and I have tried. It seems that that path forces you to change your story — you have to say, look, first I took '''''all the reals that there are''''' (which you have to do, if you take the von Neumann hierarchy seriously), but now, lookee here, I found some more. | |||
:::::::The right way to resolve this is, do whatever you have to do to find the right theorems (just as the Newton—Leibniz approach is still the best way of thinking of calculus), but realize that what you're actually talking about, when you force over ''V'', is ''names'' for objects that don't really exist. When you ask, for example, whether one of these "new reals" is between 0.3 and 0.4, sometimes you're going to get the answer "maybe". No genuine real has that property. --] (]) 22:41, 6 April 2009 (UTC) | |||
::::::::Will respond on your talk page, since this is getting off topic. — Carl <small>(] · ])</small> 00:56, 7 April 2009 (UTC) | |||
You might want to look at ] which deals with a more general question. ] (]) 06:37, 4 April 2009 (UTC) | |||
:That page seems to have the same problem I was talking to Arthur about — doesn't distinguish between honest-to-God models that live in ''V'', and models for which you have to go to forcing extensions or Boolean valued models. It's true that it would be awkward to insert correct language for the point. --] (]) 09:35, 4 April 2009 (UTC) | |||
My question is quite simple: given ZFC, can we name a few values of ''α'' such that <math>2^{\aleph_0} \ne \aleph_{\alpha}\,</math>? There's no need to expand the metalanguage to discuss models, etc - let's get to the basic, simple theory and see what we can get. For example, the first value that we can show is <math>\alpha = \omega\,</math>, the second is <math>\alpha = \omega + \omega = \omega . 2\,</math>, etc. Of course, given that it is impossible to prove within ZFC that <math>2^{\aleph_0}\,</math> is <math>\aleph_{\omega + 42}\,</math> and others, the next question would be quite obvious, but let's not do that leap. Not yet. ] (]) 03:13, 5 April 2009 (UTC) | |||
:I'm afraid your "simple question" simply doesn't make sense without some stipulations regarding the object language/metalanguage question. Now, it's not that a simple answer can't be given in some sense. The simple answer, below ω<sub>1</sub> which I think you mentioned at some point, is that only the successor ordinals can be the α you're looking for. | |||
:But the problem is that that answer, though correct ''in some sense'', is flat wrong unless you explain what you mean by it. Here's an example of why. Define α as follows: | |||
::α = 2 if CH holds | |||
::α = 1 otherwise | |||
:Now α is a successor ordinal below ℵ<sub>1</sub>, and yet it is inconsistent with ZFC that <math>2^{\aleph_0}=\aleph_\alpha</math>. | |||
:So it's just incorrect to say that you can answer your question correctly without addressing this issue. --] (]) 05:50, 5 April 2009 (UTC) | |||
::To Trovatore: Perhaps I am having trouble understanding your point, but the definition you gave for α is not a proper definition in my way of thinking. It is reminiscent of ]. ] (]) 21:10, 5 April 2009 (UTC) | |||
:::Why is it not a proper definition? It can be translated into a formula in the language of set theory, with one free variable, such that provably in ZFC, there is a unique object satisfying that formula, and that object has the properties I have ascribed to it. If that's not a proper definition, then you owe me some sort of demarcation between definitions that are proper and those that aren't. --] (]) 02:00, 6 April 2009 (UTC) | |||
::::Because of the failure of absoluteness here, one has to distinguish between the ordinal named by φ in the base model and the ordinal named by φ in the extension. For example, let φ be the formula above; if α is named by φ in the base model, there really will be another model in which ℵ(α) really is the cardinality of the continuum; however this will not be the ordinal defined by φ in the new model. Rather, one must look at the image of α under the embedding that is constructed when the new model is constructed. I don't know if this is worth pointing out somewhere; I believe it is usually taken for granted in the literature. — Carl <small>(] · ])</small> 03:17, 6 April 2009 (UTC) | |||
Albmont: the informal "short answer" is that any uncountable κ with uncountable cofinality is a possible candidate for the cardinality of the continuum. But this statement is not entirely precise because "possible" here means "can be achieved by a forcing extension" (because the informal statement is really just a much easier special case of ]), and there are some technical issues related to forcing that have to be mastered in order to fully understand what's going on. These issues are what Trovatore is alluding to. — Carl <small>(] · ])</small> 04:03, 6 April 2009 (UTC) | |||
:::::Thanks, Carl. Yes, absoluteness is the key. Since we are trying to talk about ordinals and cardinals in multiple models of set theory, we must use definitions which are independent of the choice of the model, i.e. absolute. So φ must be chosen to be Δ<sub>1</sub> which I believe that Trovatore's definition of α is not. ] (]) 06:18, 6 April 2009 (UTC) | |||
:::::: Certainly the α I defined is not absolute, and yes, that's ''one'' key. But the point is more general than that. Carl's "short answer", by itself, is simply underspecified. | |||
:::::: People have to come to terms with the difference between an object and a definition of an object, or they will be led astray by this sort of discussion. It's something that most people never really come across — every natural number, for example, has kind of a canonical definition, and the distinction between object language and metalanguage doesn't really come up until you start talking about the Goedel theorems or something. But for ordinals there's just no way around it; you have to come to terms with the problem. | |||
:::::: This is the same problem with discussions such as whether anyone can "find" a counterexample to CH, in the sense of a set of reals of intermediate cardinality. --] (]) 09:23, 6 April 2009 (UTC) | |||
I don't believe the "object language"/"metalanguage" distinction is really the problem here. In these sorts of situations we work model theoretically: start with a model W and work with a language that has a constant for every element of W. So every ordinal in W is definable in this language. One thing that does matter is to distinguish between things that look like names but are actually meant to be formulas, and things that look like names that are actually meant to be names. This is typically achieved by writing dots over the things that are meant to be names; we ought to write <math>2^{\aleph_0} = \dot{\alpha}</math>. | |||
So a slightly better way of stating the theorem at hand goes like this. | |||
:Let W be a model of set theory and assume that certain generic sets over W exist. Then for any cardinal α in W which (in W) is uncountable with uncountable cofinality, there is a forcing extension which preserves cardinalities in which <math>2^{\aleph_0} = \dot{\alpha}</math>. | |||
I don't see that it matters whether any formula φ defining α is absolute or not, because we will not actually use φ to identify a cardinal in the forcing extension, we use the forcing name. The absoluteness issue is only relevant to seeing why Trovatore's example does not give a contradiction to Easton's theorem. Easton's theorem should have a dot above the G(α), that's all. But I can see why it is usually not included. — Carl <small>(] · ])</small> 12:13, 6 April 2009 (UTC) | |||
:The reason it's necessary to make the object language — metalanguage distinction here is that the actual ''question'' was not model-theoretic, but rather proof-theoretic. And the proof-theoretic question ''looks'' like it ought to make sense, but it actually doesn't. I think we need to make clear, when giving the "in some sense correct" answer, that it is not actually an answer to the (fundamentally ill-formed) proof-theoretic question. | |||
:Of course it ''does'' answer certain instances of the proof-theoretic question, after reformulation to ''make'' them well-formed, but the person who wants to understand this really needs to go learn forcing. Once he or she learns forcing he can figure out these instances and reformulations for himself. --] (]) 17:44, 8 April 2009 (UTC) | |||
::I think we read the initial question differently. — Carl <small>(] · ])</small> 20:00, 8 April 2009 (UTC) | |||
:::Does the original question make sense if it is reformulated this way: Are there any ordinals <math>\alpha</math> for which it '''''has been shown''''' that <math>2^{\aleph_0}\ \ne \aleph_{\alpha}</math>? If yes, could the article list at least one of them? Or is it just wrong to state <math>2^{\aleph_0} \ne \aleph_{\omega}</math> without supplyning a PHD theseis?] (]) 21:43, 10 April 2009 (UTC) | |||
::::It makes less sense that way; you are running into the issue Trovatore was concerned about. I think that the answer you are looking for is the following fact. There is no model of ZFC in which the equation <math>2^{\aleph_0} = \aleph_{\omega}</math> holds. — Carl <small>(] · ])</small> 21:47, 10 April 2009 (UTC) | |||
:::Ok, I'll read this discussion more carefully and try to understand. B t w, I meant in my question within ZFC (and the negation CH of course).] (]) 21:57, 10 April 2009 (UTC) | |||
::::To give a simplistic answer — <math>2^{\aleph_0}\,</math> must obey <math>\omega < \operatorname{cf}(2^{\aleph_0})\,.</math> So it cannot be: finite, <math>\aleph_0\,,</math> <math>\aleph_\omega\,,</math> <math>\aleph_{\omega \cdot 2}\,,</math> <math>\aleph_{\omega \cdot 3}\,,</math> ... <math>\aleph_{\omega^2}\,,</math> ... etc. That is, most singular cardinals are not allowed, but <math>\aleph_{\omega_1}\,</math> would be OK because its ] is <math>\omega_1 > \omega \,.</math> | |||
::::On the other hand most regular cardinals would be OK (could be <math>2^{\aleph_0}\,</math>), specifically: <math>\aleph_1\,, \aleph_2\,, \aleph_3\,, \aleph_4\,, \aleph_5\,, \ldots \,</math><math>\aleph_{\omega+1}\,, \aleph_{\omega+2}\,, \ldots \,.</math> OK? ] (]) 12:08, 11 April 2009 (UTC) | |||
::::: So, here came my next question (that apparently has a negative answer). It it possible to give an ''explicit'' ordinal α for which it can be shown that <math>2^{\aleph_0} < \aleph_{\alpha}\,</math>? ] (]) 12:00, 16 April 2009 (UTC) | |||
::::: BTW, if I got it right, ] provides an upper bound for <math>2^{\aleph_0}\,</math>. ] (]) 12:15, 16 April 2009 (UTC) | |||
::::::Certainly it is possible to give an explict ordinal α and prove <math>2^{\aleph_0} < \aleph_{\alpha}</math>. Just let <math>\alpha=\left(2^{\aleph_0}\right)+1</math>. I think you misread the bit about PCF theory, though. --] (]) 17:40, 16 April 2009 (UTC) | |||
:::::::This would depend, of course, on whether one accepts that <math>\alpha=</math> actually refers to a specific ordinal. But I agree that Albmont's question here mixes metalanguage and object language, and that the only way to really understand what is going on is going to be to learn more about forcing in more detail. — Carl <small>(] · ])</small> 23:16, 16 April 2009 (UTC) | |||
::::::::Independently of whether you think that it represents a specific ordinal (as opposed to what? a nonspecific ordinal?), it is undeniably the case that ZFC proves the formula <math>\alpha=\left(2^{\aleph_0}\right)+1 \implies 2^{\aleph_0}<\aleph_\alpha</math>. The problem, besides the object–meta thing, or possibly as a rephrasing of it, is that the word "explicit" is doing unexamined work here. --] (]) 23:28, 16 April 2009 (UTC) | |||
:::::::::Yes, of course ZFC proves that formula. The problem with mixing "explicit" and "proves" is that the former is best handled in a language with a constant for every ordinal, while the latter is usually handled in the language without those constants. — Carl <small>(] · ])</small> 00:06, 17 April 2009 (UTC) | |||
::::::Albmont, on the PCF thing: My guess is that you looked at the result that said that <math>2^{\aleph_\omega}<\aleph_{\aleph_4}</math>, granted that <math>\aleph_\omega</math> is a strong limit cardinal, and reasoned that since <math>2^{\aleph_0}\leq2^{\aleph_\omega}</math>, it follows that <math>2^{\aleph_0}<\aleph_{\aleph_4}</math>. That would be fine, except that it ignores the "granted that..." part. | |||
::::::Once you know (or assume) that <math>\aleph_\omega</math> is a strong limit, you actually don't ''need'' PCF theory to prove that <math>2^{\aleph_0}<\aleph_{\aleph_4}</math>. If it's not obvious, think about it for a minute. When you see it you'll go ''ohh''. --] (]) 09:17, 17 April 2009 (UTC) | |||
::::::: Yes, I saw that inequality, but I also saw the "granted that..." part - which hindered me to write <math>2^{\aleph_0} < \aleph_{\omega_4}\,</math> (a note on style: is it ok to write <math>\aleph_{x}\,</math>, where ''x'' is a cardinal?). Does the PCF thing give '''any''' upper limit without any extra axioms beyond ZFC? Unfortunately, I think it will take more than a minute to think about it :-) ] (]) 17:14, 17 April 2009 (UTC) | |||
::::::pcf theory will give you no bounds on the continuum. pcf theory is about powers of singular cardinals. It is certainly possible that the continuum is <math>\aleph_{\omega_5}</math>. <i><math>2^{\aleph_0}</math> can be anything it ought to be.</i> (Robert Solovay, 1965) --] (]) 18:23, 17 April 2009 (UTC) | |||
:To Albmont: I am not familiar with PCF theory, but the article on it says "It gives strong upper bounds on the cardinalities of power sets of singular cardinals.". I would just point out that <math>\aleph_0</math> is regular, not singular. Thus it appears that the theory does not apply to it. Anyway, ] implies that there is ''no upper bound'' on <math>2^{\aleph_0}\,.</math> ] (]) 20:01, 17 April 2009 (UTC) | |||
::Well, <math>2^{\aleph_0}</math> is necessarily the smallest cardinality of a powerset of an infinite set, so any bound on the powerset of a singular cardinal must ipso facto bound the continuum. | |||
::Spoiling my own riddle above, PCF theory does indeed imply that, if <math>\aleph_\omega</math> is a strong limit, then the continuum is less than <math>\aleph_{\aleph_4}</math>. But this is trivial — by the definition of "strong limit", since <math>\aleph_0<\aleph_\omega</math>, it's immediate, under the given assumption, that <math>2^{\aleph_0}<\aleph_\omega</math>. --] (]) 07:44, 18 April 2009 (UTC) | |||
== CH in a non-AC context == | |||
Yuck. This is the kind of issue I'd ordinarily prefer to just ignore. But the issue has been raised at ] and seems likely to recur. | |||
The question is, which definition of CH should we give as primary, the one I call ''weak CH'', which says ''every uncountable set of reals is equinumerous with the reals'', or ''strong CH'', which says ''the reals are equinumerous with the countable ordinals'' (that is, <math>2^{\aleph_0}=\aleph_1</math>)? | |||
It's true that most sources seem to state it in a weak form (I'm counting ''there is no cardinality strictly between <math>\aleph_0</math> and <math>2^{\aleph_0}</math>'' as an instance of the weak form; it's equivalent modulo the violent pathology of an infinite Dedekind-finite set of reals). Jech is a notable exception; he explicitly equates ''the continuum hypothesis'' with <math>2^{\aleph_0}=\aleph_1</math>. | |||
However, in the default set-theoretic context, the axiom of choice holds, so there is no need to make the distinction. Therefore I think it is unjustified to assume that this choice of statement reflects a preference as to the essential meaning of CH in a non-AC context. I would actually argue that strong CH is more natural to think of as capturing that meaning from the standpoint of contemporary set theory; I've given a couple of reasons at ]. | |||
The problem at the AD article is that an editor wanted to add the claim that AD implies CH, which I think is severely contrary to the usage of the terminology in the set-theoretic community. I've worked with set theorists who study AD, and I never recall any of them putting it that way. The problem for ''this'' article is that it puts the weak CH statement first, and ''then'' asserts that, given AC, this is equivalent to strong CH; this I think is misleading. Better would be to state them both, note that they're equivalent, but then note that in the absence of AC, they're not. --] (]) 19:59, 24 April 2009 (UTC) | |||
:A few comments: | |||
:# "weak CH" is sometimes used for <math>2^{\aleph_0}< 2^{\aleph_1}</math>. But let's keep your terminology for the moment. | |||
:# I think that in the non-AC context, "weak CH" is more interesting, because strong CH rarely (in the sociological sense) holds. | |||
:# The "most sources" that you mention include Cantor and Hilbert (in his first problem). | |||
:# There is a theorem of Sierpinski that GCH implies CH. This theorem is about weak GCH; the implication from strong GCH is less interesting, since it factors through the property "every power set of an ordinal can be well-ordered", which is not about cardinal arithmetic at all. | |||
:Therefore I would prefer weak CH as the "primary" definition of CH. (Despite Jech. We also don't follow Kunen in phrasing AC as "every set can be well-ordered".) As far as the AD article is concerned, I think the current version (with the inline explanation of precisely which form of CH it implies) is quite clear. | |||
:--] (]) 16:12, 8 May 2009 (UTC) | |||
::Although 4 is an interesting point, I still don't agree: | |||
::* on point 2: whichever might be "more interesting", weak CH is in my experience rarely called ''the continuum hypothesis'' in that context (though Moschovakis admittedly does, which surprised me). | |||
::* On point 3: Cantor was working in a non-formalized context which however clearly would be described modernly as "assuming AC", so I don't see that as really all that relevant | |||
::* Strong CH is the one of the simpler logical form (<math>\Sigma^2_1</math> as against <math>\Pi^2_2</math>, and the one with stronger absoluteness properties across models. --] (]) 07:24, 9 May 2009 (UTC) | |||
::::I realize it's been nearly 15 years, but since the article doesn't give a citation for the equivalence, I'm showing here that if there is "an infinite Dedekind-finite set of reals" then there is a counterexample which is strictly larger than <math>\aleph_0</math>. | |||
:::::Let <math>S_0</math> be a set of reals with ], and let S be <math>S_0 \cup</math> {0,1,2,3,...}. One has <math>|S_0| \leq</math> |S| and <math>\aleph_0 \leq</math> |S|, so since <math>|S_0|</math> is incomparable with <math>\aleph_0</math>, one gets <math>\aleph_0</math>< |S|. S is a set of reals, so |S|<math>\leq \beth_1</math>. Towards a contradiction, assume |S| = <math>\beth_1</math>. | |||
:::::Let f be a bijection from S to the reals. Choose a base and how digits would be replaced for Cantor's diagonal argument, and then for all natural numbers n, let <math>y_n</math> be the real number produced by applying Cantor's diagonal argument to the sequence <math>(y_{n-1},y_{n-2},...,y_2,y_1,y_0,f(0),f(1),f(2),f(3),...)</math>, and let <math>x_n</math> be <math>f^{-1}(y_n)</math>. For all natural numbers n: | |||
::::::By Cantor's diagonal argument, <math>y_n \not\in</math> {f(0),f(1),f(2),f(3),...}, so <math>x_n \not\in</math> {0,1,2,3,...}. Since S is <math>S_0 \cup</math> {0,1,2,3,...}, this means <math>x_n \in S_0</math>. <math>y_n</math> is also not in <math>\{y_{n-1},y_{n-2},...,y_2,y_1,y_0\}</math>, so <math>x_n \not\in \{x_{n-1},x_{n-2},...,x_2,x_1,x_0\}</math>. | |||
:::::Thus <math>x_0,x_1,x_2,x_3,...</math> is an infinite sequence of distinct elements of <math>S_0</math>, contradicting that <math>S_0</math> has ]. This contradiction shows that |S| <math>\neq \beth_1</math>, so <math>\aleph_0</math> < |S| < <math>\beth_1</math>. | |||
::::] (]) 00:32, 25 February 2024 (UTC) | |||
== Kurt Godel's Proof == | |||
The section "As the first Hilbert problem" and "Impossibility of proof and disproof (in ZFC)" don't agree on Kurt Godel's work using the AC: | |||
:Later work by Kurt Gödel in 1939 showed that the continuum hypothesis could not be disproved based on the current axioms of set theory (ZF). | |||
vs | |||
:Kurt Gödel showed in 1940 that the continuum hypothesis (CH for short) cannot be disproved from the standard Zermelo-Fraenkel set theory (ZF), even if the axiom of choice is adopted (ZFC). | |||
The former only mentions that Godel did his work in ZF, but the latter section says that his original work was under the ZFC. Given the results, I think it was under ZFC. I think the former section needs to be made more explicit. | |||
--] (]) 08:11, 15 May 2009 (UTC) | |||
:Gödel showed that ~CH cannot be proved in ZF and also cannot be proved in ZFC. — Carl <small>(] · ])</small> 11:37, 15 May 2009 (UTC) | |||
::To Carl: I think you mean "disproved" rather than "proved". Do not confuse him with ]. | |||
::To B-Con: ] showed that within a model of ZF, one can define the ] (L) a proper class which not only satisfies ZF but also GCH and thus both CH and the axiom of choice. Thus, if CH could be disproved from ZF or from ZFC, then one would have reached a contradiction in this submodel and thus a contradiction in ZF itself. ] (]) 10:10, 16 May 2009 (UTC) | |||
:::Thanks, I meant the negation of CH of course, and so I added a tilde above. Re B-Con: it's better to look things up, or ask, rather than making guesses. — Carl <small>(] · ])</small> 15:14, 16 May 2009 (UTC) | |||
== Cantor's fanatism == | |||
I was just reading a book about Cantor. It mentioned that one of the main reasons Cantor believed in the continuum hypothesis was because he managed to show every nonempty perfect set is the same size as the reals, and then showed a closed set C is either countable or has cardinality of the reals by partitioning C into a perfect set and a countable set. And then he said "In future paragraphs it will be proven that this remarkable theorem has a further validity even for linear point sets which are not closed,..." Should this be in the article? Also I personally believe his reasoning is wrong: since the reals have a countable base, the number of open sets is the same as the reals, and thus so is the number of closed sets (because they are complements of open sets). But there are "so many more" subsets, because 2^(aleph0) is negligible compared to 2^(2^(aleph0)). Right???] (]) 14:28, 14 August 2009 (UTC) | |||
:Cantor never thought he had proved CH, iirc. Yes, a quote from him (and a little more info on the origins of the problem--Cantor did a lot of work on it) would be nice. ] (]) 11:32, 24 March 2010 (UTC) | |||
== Goedel == | |||
Could someone clueful please check whether (by me) is any good, and revert it if necessary. I started having doubts after making it. Thanks. ] (]) 17:57, 17 February 2010 (UTC) | |||
:Sounds better to me. ] (]) 04:19, 18 February 2010 (UTC) | |||
== Dehornoy article == | |||
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.6594 | |||
an article explaining(?) Woodin's recent work. I don't understand it at all. Maybe someone here can make sense of it and possibly cite it or use something from it. ] (]) 06:24, 18 February 2010 (UTC) | |||
==Why the name?== | |||
Why is this hypothesis called the "continuum" hypothesis? The proposition "There is no set whose cardinality is strictly between that of the integers and that of the real numbers." is asserting the lack of any set of size (or cardinality) between integers and real numbers, which sounds far more like the a "non-continuum hypothesis." or since it is saying that there is not a single set that stands in that range (far less a continuum of size/cardinalities of sets) the theory might even be called the "not-even-close-to-continuum hypothesis" or "discontinuum hypothesis" or "discrete hypothesis." Since continuum is a word in normal English, I guess it would help to know why this theory has the name it has. I can't understand the name, let alone the math :-) --] (]) 10:09, 14 October 2010 (UTC) | |||
:Answering my own question, looking at the article on ], the latter seems to be saying that the fact that there are no sets between the size (cardinality) of integers and real numbers, proves that the latter forms a continuum? I.e. the continuum hypothesis, is called such, not because it says something about a continuum of sets, but because it posits a continuum of real numbers. So perhaps by way of explanation, one might write, "'There is no set whose cardinality is strictly between that of the integers and that of the real numbers.' implies that real numbers form a continuum, and hence the name of this theory." Is that it? Or indeed, since from the the ] article it says that the cardinality of real numbers is the cardinality of the real line (is that the same as "a or any real line"?) then the continuum hypothesis is called such because it implies reality is continuous?!--] (]) 10:18, 14 October 2010 (UTC) | |||
It's classical terminology. The real numbers were traditionally called "the continuum" and the continuum hypothesis is a hypothesis about the cardinality of the real numbers. — Carl <small>(] · ])</small> 10:51, 14 October 2010 (UTC) | |||
:Perhaps because it could be worded "Any ] of the continuum is ] with the continuum.". ] (]) 11:55, 14 October 2010 (UTC) | |||
From my classes we were taught that was called "the continuum", (which of course has the same cardinality as the Reals), but nevertheless Cantor was interested in Fourier series convergence, and all those fellas ever talk about is :P . ] (]) 13:15, 13 January 2011 (UTC) | |||
:Where was your teacher trained? ] (]) 13:32, 13 January 2011 (UTC) | |||
Australia and University of Newcastle Upon Tyne - England] (]) 11:35, 14 February 2011 (UTC) | |||
:Truncating the continuum at 0 and 2\pi seems a bit unusual. I have certainly not seen any trace of such a convention at any of the wiki pages on varieties of continua. Also, historically mathematicians have studied various notions of the continuum but it always tends to be a linear one, see ]. ] (]) 17:31, 14 February 2011 (UTC) | |||
== No inverse powerset == | |||
{{user|70.51.177.249}} and {{user|70.54.228.146}} added a reference to "Deciding the Continuum Hypothesis with the Inverse Power Set" by Patrick St-Amant. begins by adding a new axiom to ZFC, namely | |||
:<math>\forall X \exists Y ( P (Y) = X ) \,.</math><br> | |||
This axiom is inconsistent with the existence of the empty set. The existence of the empty set is an unavoidable consequence of the existence of any set and the axiom of separation. The empty set is defined by | |||
:<math> \forall A ( \lnot \, A \in \varnothing ) \,.</math><br> | |||
The powerset of a set ''B'' is defined by | |||
:<math> \forall C ( \forall D ( D \in C \rightarrow D \in B ) \leftrightarrow C \in P (B) ) \,.</math><br> | |||
If the new axiom were true, then we could instantiate it for the empty set to give | |||
:<math> P (Y) = \varnothing \,</math><br> | |||
for some set ''Y''. Then putting ''Y'' in for ''B'' in the definition of powerset gives | |||
:<math> \forall C ( \forall D ( D \in C \rightarrow D \in Y ) \leftrightarrow C \in \varnothing ) \,.</math><br> | |||
In particular, if ''C'' were the emptyset, we would get | |||
:<math> \forall D ( D \in \varnothing \rightarrow D \in Y ) \leftrightarrow \varnothing \in \varnothing \,.</math><br> | |||
By the definition of the emptyset | |||
:<math> \lnot D \in \varnothing \,</math><br> | |||
for any ''D'', and thus | |||
:<math> \forall D ( D \in \varnothing \rightarrow D \in Y ) \,</math><br> | |||
holds vacously. Consequently, we would arrive at | |||
:<math> \varnothing \in \varnothing \,</math><br> | |||
which contradicts the definition of the empty set. | |||
Since the new "axiom" led to a contradiction (using only definitions and the existence of the empty set), it must be false. Thus Patrick St-Amant's whole project is an exercise in futility, in fact, an obvious hoax. ] (]) 12:29, 6 January 2011 (UTC) | |||
:It might not be, actually. St-Amant seems to be proposing a kind of a Grothendieck construction to "extend" the universe of sets to a kind of an object of negative rank in the set-theoretic universe. Note that he seems to have a paper published in a refereed journal. The text does not seem funny enough to be merely a hoax. But at any rate it is far from clear that it meets notability guidelines. ] (]) 13:48, 6 January 2011 (UTC) | |||
::Hoaxes need not be "funny", i.e. comical. They may be serious attempts to deceive people, perhaps with the intention of putting the victims down in order to make the perpetrator seem superior by comparison. | |||
::If the universe of sets is to be extended, then he needs to make it clear at the outset what rules of ZFC are being relaxed (negated or altered), instead of pretending to preserve them all. In this case, how has he changed the definitions of the empty set, of powerset, or the axiom of separation? Otherwise the argument above will still apply and render his work meaningless. ] (]) 21:05, 6 January 2011 (UTC) | |||
:::By the way, I should note that: when a set ''X'' is the powerset of a set ''Y'', ''Y'' is the union of ''X''. So a one-sided inverse already exists. What we are arguing about here is whether there could be inverse on the other side of the powerset operation. Ironically, St-Amant purports to define his inverse operation in his second axiom, but he uses the wrong side relative to what he said in his first axiom. Thus the second axiom could be construed as referring to the union operation. ] (]) 06:00, 7 January 2011 (UTC) | |||
::::I imagine he means the usual axioms to apply to "sets" whose rank is a natural number, or something like that. I you sure he did not say something to that effect somewhere in the 30 page paper? I don't really have the set-theoretic wherewithal to understand the paper, but why are we trying so hard to refute it? An alternative approach would be to encourage this new contributor to add this material once it is published and its notability is established. ] (]) 06:03, 7 January 2011 (UTC) | |||
:::::I am not going to waste my time trying to read and understand a long paper when I find a fundamental error on the second page. The reason I wrote this section of talk to refute it is that at ] some people expressed doubts about my claim that this is a hoax. ] (]) 06:10, 7 January 2011 (UTC) | |||
::::::I would assume that before one claims something is a hoax, one would necessarily have to waste his time at least perusing the paper in question. On the second page you mentioned, the author clearly states that the power axiom is supposed to apply only to a certain class of objects in his theory, whereas the other axioms of ZF are assumed to apply only to "sets which arise from ZF". ] (]) 11:45, 7 January 2011 (UTC) | |||
:::::::We're applying the wrong standard for removal. It may not be a hoax, but it's not well-formed (it doesn't describe the complete axiom systems, so that proofs could be verified, nor is there evidence the resulting system would be consistent) and there is no sign of reliable sources referring to it. It should not appear in a Misplaced Pages article, even as an external link, until someone reliable talks about it. — ] ] 15:36, 7 January 2011 (UTC) | |||
:::::::That the author is published doesn't make his unpublished papers reliable. He would have to be an expert in the field; a minimum qualification would be that he has published papers in the field. The range of fields of his unpublished papers argued about in Misplaced Pages articles suggests he is not an expert. — ] ] 15:42, 7 January 2011 (UTC) | |||
{{unindent}} To Tkuvko: If you understand his theory, then tell me — Where am I wrong in my deduction of a contradiction from his theory? Which is the first step that fails and why? ] (]) 11:08, 8 January 2011 (UTC) | |||
::Since the empty set is not the powerset of anything, the "new axiom" fails on first use. -- cheers, ] <sup>]</sup> 14:28, 8 January 2011 (UTC) | |||
:Look I am not acquianted with St Amant and have no vested interest in defending his theory, though I am curious about it. Perhaps your argument fails in the second step. Why do you assume that his idealized power set operation is supposed to be surjective onto traditional sets? ] (]) 16:48, 8 January 2011 (UTC) | |||
::To Tkuvho: If I understand you, you are saying that my inference from | |||
:::<math>\forall X \exists Y ( P (Y) = X ) \,</math> | |||
::to its instance | |||
:::<math> \exists Y ( P (Y) = \varnothing ) \,</math> | |||
::might be wrong. That is, St-Amant may not intend that all normal sets (which he calls Zermelo sets) be covered by his axiom 1. However, he does give several examples of normal sets to which he applies ''P''<sup>−1</sup>, some of which do not contain the empty set as an element (which is all I really need). Can you quote any sentence in his article which gives a criterion for excluding some normal sets from the domain of ''P''<sup>−1</sup>? ] (]) 23:09, 9 January 2011 (UTC) | |||
:::Well I would have hoped one of the 70.etc IP's might have given us an explanation if treated in a more welcoming fashion. ] (]) 01:13, 10 January 2011 (UTC) | |||
== Large cardinal? == | |||
Is it consistent with ZFC to have <math>2^{\aleph_0}</math> = some large cardinal?] (]) 07:48, 9 May 2011 (UTC) | |||
:Well, not the "normal" ones, so to speak. But there are variants that still fit neatly into the consistency-strength hierarchy for which the answer could be yes. For example, it's consistent that the continuum is ] (equiconsistent with the existence of an inaccessible) or that it's ] (equiconsistent with the existence of a measurable). --] (]) 07:53, 9 May 2011 (UTC) | |||
::The two cases you mention are related in a way, right? I vaguely recall reading in "Geometric Measure Theory" by Herbert Federer (a horribly difficult book for me by the way, but good) that the existence of a nontrivially measurable infinite set requires the existence of an inaccesible cardinal. I need to refresh my brief knowledge on that. By the way, the articles here on inaccessible cardinals and related definitions are kind of messy. (I can be more precise regarding that last statement if needed, given some time.)] (]) 09:12, 9 May 2011 (UTC) | |||
::Edit: In the above I meant measurable set with all subsets measurable. ] (]) 19:03, 9 May 2011 (UTC) | |||
::::Right, I believe that requires a real-valued measurable, but I'd have to check myself on that. Real-valued measurables are certainly all weakly inaccessible, and quite a bit more than that (e.g. weakly Mahlo). I have heard of something called a "real-valued supercompact", so it doesn't necessarily stop at measurable. I wonder if there's some abstract way for taking a large-cardinal property, defined say in terms of extenders, and turning all the measures into real-valued measures, and thereby getting a "real-valued" version. --] (]) 19:08, 9 May 2011 (UTC) | |||
:::::As far as the measures go, signed measures and complex-valued measures can be expressed in terms of real-valued measures (positive semidefinite ones) using the Hahn-Jordan decomposition. But you probably knew that. ] (]) 21:04, 9 May 2011 (UTC) | |||
::::::Ah, just figured out what you were talking about here. That's not really what I meant. The measures given by extenders, when defining large cardinals, are ordinarily ''two''-valued measures — the only possible values are 0 and 1. Going to real-valued measures is a liberalization, not an extra requirement. --] (]) 03:07, 10 May 2011 (UTC) | |||
:::::::Hm. I should perhaps have read ] before I opened my mouth;). ] (]) 09:52, 10 May 2011 (UTC) | |||
:::::::Indeed, we ''are'' talking about the same thing, at least we were at the outset. My reference refers to non-measurable cardinals as Ulam Numbers. The only thing that appears to differ is the term of ] that gives the transition from ''measurable'' to ''real-valued measurable'' (implicitely there in Federer I believe). Do you mean that you want to take an arbitrary measure and expand it into some sort of sum of real-valued measures? And, in addition, somehow express various large cardinal properties to see exacly how strong large cardinal axiom one needs to actually find a cardinal that at least ''might'' be real-valued measurable? In other words, you want to find exactly where in the supposedly linearly ordered consistency-strength hierarcy of large cardinal axioms each of the involved axioms belong? (I'm only guessing here so don't laugh too much!) ] (]) 10:28, 10 May 2011 (UTC) | |||
:::] allows one to make <math>2^{\aleph_0}</math> equal to be any uncountable regular cardinal since they all have cofinality greater than <math>\omega \,.</math> However, when you do that the cardinal in question would cease to be a ] and thus would no longer satisfy the definitions of most types of large cardinals. ] (]) 10:03, 9 May 2011 (UTC) | |||
::::Yes, that makes sense. But you must mean that the cardinal in question would cease to be a strongly inaccessible cardinal (if that is what we happened to start with)? Might it still be a weakly inaccessible cardinal? ] (]) 22:28, 9 May 2011 (UTC) | |||
:::::If you do it in the most obvious way (just add κ Cohen reals) then I think the forcing preserves cardinalities and cofinalities, so κ should still be both a limit cardinal and a regular cardinal, thus weakly inaccessible. --] (]) 01:06, 10 May 2011 (UTC) | |||
== The Axiom of symmetry == | |||
One intuitive argument against CH is said to be Freiling's Axiom of Symmetry. I wonder where the intuition comes from. I agree that the Axiom of Symmetry (AX) sounds quite convincing on first reading, but that's a little thin for mathematical reasoning. I thought about a way to base the intuition on provable facts using smaller sets than the reals. What about this? | |||
Modify AX the following way: | |||
1.) We throw darts at a '''countable''' set instead of the unit interval (I). Say the natural numbers (N) for definiteness. | |||
2.) The function f:I->{x:x is a countable subset of I} occuring in AX is exchanged for f:N->{x:x is a finite subset of N} | |||
Leave everything else untouched in AX. Call this thing the Axiom of Countable Symmetry (ACX). | |||
I think that ACX "sounds" just about as convincing as AX on "first reading". Lets call a counterexample of AX (or ACX) a Freiling function. ACX is false. Proof: f(n) = {m: m <= n} is a Freiling function. | |||
I don't draw any conclusions from this. But provided I'm correct in the above , I can't see the validity of the claim that AX is an argument against CH. If anything, it might be an argument in favour of CH, but I wouldn't go as far as that. In the article ] there are listed two objections against AX. My example above might just be an example of objection number two, but I can't see exactly what that number two says. At any rate one does not need CH to disprove ACX, and I can't see the need for AC either. For a countable set there exists a bijection between it and N. That bijection does provide a wellordering (with the same length as N). Or doesn't it? Correct me if I am wrong. ] (]) 00:00, 10 May 2011 (UTC) | |||
That's the point call Indduction i and strong induction I | |||
Then what I have proved it that ZFCI<=>ZFCi<=>ZFCiCH<=>ZFCCH hence following it back and forth ZFCI<=>ZFCCH Hence If we assume ZFC, and not induction, we have not CH. | |||
Hence ZFCi<=>ZFCI<=>ZFCRH which implies trivially that ZFCi<=>ZFCRH you can just never right down all the maps from R to N and N to R at the same time, but you can approximate them by 1-1 function f_N:I->R and the function f(x)= x and f(x)=-x:R->R and hence I->I invertibaly. | |||
you should probably understand now, thanks for looking :) <small><span class="autosigned">— Preceding ] comment added by ] (] • ]) 03:46, 20 October 2011 (UTC)</span></small><!-- Template:Unsigned --> <!--Autosigned by SineBot--> | |||
==Feferman/EFI== | |||
I added a note about an article by Solomon Feferman, though I think I may have messed up the explanation somewhat—I figured the main thing was to get the citation into the article. Any review/fixes would be appreciated. The EFI page (url in the Feferman citation) looks interesting in general and there's an overview by Koellner of the current state of CH, that also seems worth summarizing in the article. I might try, but I'm not very knowledgeable, so it would be great if someone else did it. Feferman has some other slides about his "definiteness" theory that are a little more detailed than his EFI slides, if that's of any interest. ] (]) 01:57, 5 February 2012 (UTC) | |||
== Woodin == | |||
Hugh Woodin appears to have changed his mind regarding the truth value of CH. This should be reflected in the article. (See e.g. the Hugh Woodin wiki page.) | |||
] (]) 22:35, 9 April 2012 (UTC) | |||
:Can you link a recent paper by him to that effect? ] (]) 11:16, 10 April 2012 (UTC) | |||
::No, I have nothing better than hearsay, meaning what you find on the net when searching "Ultimate L continuum hypothesis" in Google. I'll look a little more carefully... | |||
::Here is a nontechnical article. Better than nothing, but not by him, and thus not good enough for a reference. http://www.newscientist.com/article/mg21128231.400-ultimate-logic-to-infinity-and-beyond.html?full=true | |||
::] (]) 15:33, 10 April 2012 (UTC) | |||
Never mind the article. It will not be changed before a publication comes anyway. The interesting thing for me is ''if'' he has changed his mind. Does anyone of you gurus have an idea? Ultimate L seems to be a model of ZFC + a bunch of large cardinal axioms (including Woodin cardinals). There are lecture notes on it from a set theory workshop in 2010 available on the net. ] (]) 20:20, 10 April 2012 (UTC) | |||
:By secondhand conversation, I do believe he has changed his mind at least to some extent. His previous argument apparently rested on an argument that he thought had that would show there was a limit to the large cardinals you can have in HOD. When he really tried to nail this argument down, it apparently fell apart, and so he had to rethink. The details of what he thinks now, I couldn't tell you. --] (]) 21:13, 10 April 2012 (UTC) | |||
::Tnx for reply Trovatore. The reason that I'm interested is that CH is such a great mathematical problem. It's deep deep deep, but still a layman like me can understand the statement of it. ] (]) 11:29, 13 April 2012 (UTC) | |||
== Questions == | |||
Does anyone know, if; | |||
:<math>2^{\aleph_\alpha} = \aleph_{\alpha+1}.</math> | |||
What this evaluates to? | |||
:<math>2^{{{2}^2}^...}.</math> | |||
Edit: It won't let me format that how i wanted to - basically I mean what is 2 to the power of 2 to the power of 2 to the power of 2 to the power of 2 and so on. <small><span class="autosigned">— Preceding ] comment added by ] (] • ]) 16:24, 23 October 2012</span></small><!-- Template:Unsigned --> | |||
:::Hi 109. This is an article ], which is intended for discussions aiming at improving the article. General questions like this can be asked at ]. --] (]) 19:18, 23 October 2012 (UTC) | |||
My apologies, cheers. <span style="font-size: smaller;" class="autosigned">— Preceding ] comment added by ] (]) 20:37, 28 October 2012 (UTC)</span><!-- Template:Unsigned IP --> <!--Autosigned by SineBot--> | |||
== Proofs of certain consequences of GCH == | |||
Since a recent edit has implicitly raised the question of how the formulas in ] are justified. I will provide proofs here. | |||
First, take notice of the following facts: | |||
* α < β implies <math>\aleph_{\alpha} < \aleph_{\beta} \,</math>; | |||
* the properties of exponentiation given at ]; | |||
* GCH implies <math>\aleph_{\beta+1} = 2^{\aleph_{\beta}} \,</math>; | |||
* GCH implies the ] which, in turn, implies <math>\kappa \cdot \nu = \max (\kappa, \nu) \,</math> and in particular <math>\kappa \cdot \kappa = \kappa \,</math> for infinite cardinals κ and ν; and | |||
* AC (and thus GCH) also implies ]. | |||
Now, suppose that α ≤ β+1, then | |||
:<math>\aleph_{\beta+1} = 2^{\aleph_{\beta}} \leq \aleph_{\alpha}^{\aleph_{\beta}} \leq \aleph_{\beta+1}^{\aleph_{\beta}} = (2^{\aleph_{\beta}})^{\aleph_{\beta}} = 2^{(\aleph_{\beta} \cdot \aleph_{\beta})} = 2^{\aleph_{\beta}} = \aleph_{\beta+1} \,</math> | |||
which means | |||
:<math>\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\beta+1} \,.</math> | |||
On the other hand, suppose that β+1 < α, then | |||
:<math>\aleph_{\alpha} = \aleph_{\alpha}^{1} \leq \aleph_{\alpha}^{\aleph_{\beta}} \leq (2^{\aleph_{\alpha}})^{\aleph_{\beta}} = 2^{(\aleph_{\alpha} \cdot \aleph_{\beta})} = 2^{\aleph_{\alpha}} = \aleph_{\alpha+1} \,</math> | |||
which means | |||
:<math>\aleph_{\alpha} \leq \aleph_{\alpha}^{\aleph_{\beta}} \leq \aleph_{\alpha+1} \,.</math> | |||
If we further suppose that <math>\aleph_{\beta} < \operatorname{cf} (\aleph_{\alpha})</math> where '''cf''' is the ] operation, then any function from <math>\aleph_{\beta} \,</math> to <math>\aleph_{\alpha} \,</math> must be bounded above by some <math>\gamma < \aleph_{\alpha} \,.</math> And γ has a cardinality <math>\vert \gamma \vert = \aleph_{\delta} \,</math> where δ < α. The cardinality of the set of functions so bounded by γ is | |||
:<math>\aleph_{\delta}^{\aleph_{\beta}} \leq 2^{(\aleph_{\delta} \cdot \aleph_{\beta})} = \aleph_{\max(\delta,\beta)+1} \leq \aleph_{\alpha} \,.</math> | |||
Adding these together for the <math>\aleph_{\alpha} \,</math> possible values of γ gives | |||
:<math>\aleph_{\alpha}^{\aleph_{\beta}} \leq \aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha} \,</math> | |||
which means | |||
:<math>\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha} \,.</math> | |||
On the other hand, if we further suppose <math>\operatorname{cf} (\aleph_{\alpha}) \leq \aleph_{\beta} \,,</math> then by one of the corollaries of König's theorem we have | |||
:<math>\aleph_{\alpha} < \aleph_{\alpha}^{\operatorname{cf} (\aleph_{\alpha})} \,</math> | |||
and thus | |||
:<math>\aleph_{\alpha+1} \leq \aleph_{\alpha}^{\operatorname{cf} (\aleph_{\alpha})} \leq \aleph_{\alpha}^{\aleph_{\beta}} \,</math> | |||
which means | |||
:<math>\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha+1} \,.</math> | |||
These were what was to be proved. ] (]) 10:05, 13 November 2012 (UTC) | |||
== Result by Laszlo Patai == | |||
] contains the following statement, which is tagged as needing a citation: | |||
''"A recent result of Carmi Merimovich shows that, for each ''n''≥1, it is consistent with ZFC that for each κ, 2<sup>κ</sup> is the ''n''th successor of κ. On the other hand, Laszlo Patai proved, that if γ is an ordinal and for each infinite cardinal κ, 2<sup>κ</sup> is the γth successor of κ, then γ is finite."'' | |||
Are those two results published? Using Google Scholar, I have been unable to locate a source by Laszlo Patai containing this statement. The source by Merimovich which the first part is apparently based on might be | |||
{{cite journal | last = Merimovich | first = Carmi | title = A power function with a fixed finite gap everywhere | journal = J. Symbolic Logic | volume = 72 | issue = 2 | pages = 361-417 | date = 2007 | url = http://arxiv.org/pdf/math.LO/0005179.pdf | doi = 10.2178/jsl/1185803615 | mr = 2320282 | zbl = 1153.03036}} | |||
Is there a source for the part attributed to Laszlo Patai? -- ] ] 13:07, 11 July 2013 (UTC) | |||
:Ladislaus Patai wrote a paper "Über die Reihe der unendlichen Kardinalzahlen" in 1926, published in "Mathematische Zeitschrift" in 1928. But I cannot find this theorem there. | |||
:The proof is easy by today's standards: | |||
::Assume that <math>\gamma \ge \omega</math>, so <math>1 + \gamma = \gamma</math>. Assume <math>2^{\aleph_\alpha} = \aleph_{\alpha+\gamma}</math> for all <math>\alpha</math>. Let <math>\delta</math> be minimal such that <math>\gamma + \gamma < \gamma + \delta + \gamma</math>. Note that <math>\delta</math> has to be a limit ordinal <math>\le\gamma</math>, and <math>\aleph_{\gamma+\delta}</math> must be a singular cardinal. | |||
:::Why? First, <math>\alpha < \delta \Rightarrow \gamma + \gamma = \gamma + \alpha + \gamma = \gamma + \alpha + 1 + \gamma \Rightarrow \alpha+1 < \delta</math>. | |||
:::Second: Clearly <math>\delta \le \gamma</math>, as <math> \gamma + \gamma < \gamma + \gamma + \gamma</math>. | |||
:::Third: <math>cf(\aleph_{\gamma + \delta}) = cf(\delta) \le \delta \le \gamma < \gamma + \delta \le \aleph_{\gamma + \delta}</math>. | |||
:: But the sequence <math>(2^{\aleph_\alpha}:\alpha < \gamma + \delta)</math> is eventually constant with value <math>\aleph_{\gamma + \gamma}</math>, so by the Bukovsky-Hechler theorem also <math>2^{\aleph_{\gamma + \delta}}</math> has this value <math>\aleph_{\gamma + \gamma} < \aleph_{\gamma + \delta + \gamma}</math>, contradicting the assumption. | |||
:--] (]) 16:44, 13 September 2013 (UTC) | |||
== AC or ~AC == | |||
Actually, in ZF, I think the Aleph hypothesis ''does'' imply the axiom of choice. It doesn't in ZFU (with urelements) or ZF- (- regularity). Let me see. I'll have to check my references, but | |||
:<math>\mathrm{AH}: (\forall \alpha)2^{\aleph_\alpha}= \aleph_{\alpha+1}</math> | |||
implies PW: | |||
:The power set of a well-ordered set can be well-ordered. | |||
implies AC. — ] ] 15:50, 3 September 2013 (UTC) | |||
:Yes, indeed.—] ] 17:11, 3 September 2013 (UTC) | |||
::Found a specific theorem. Theorem 13.3.1 at {{cite book|title=Set Theory for the Mathematician|last=Rubin|first=Jean E.|publisher=Holden-Day|date=1967|lccn=67-13848|page=319}} shows that, under some circumstances, in NBGU, AH implies the ], which is known to be equivalent to the ]. Those circumstances are met if there are no ]s, as in NBG set theory. I'll restore the original comment that AH implies AC. — ] ] 02:54, 4 September 2013 (UTC) | |||
=== ZF + AH -> AC === | |||
Obviously, ZF + AC -> ( GCH <-> AH ). And, as I showed at ], ZF + GCH -> AC. If one can also show that ZF + AH -> AC, then it follows that ZF -> ( GCH <-> AH ). | |||
It suffices to show for all ordinals α that ''V''<sub>α</sub> can be injected into the ordinals. However, there is a difficulty with the argument by Arthur Rubin above because it does not deal with the case that α is a limit ordinal. If one simply tries to aggregate the sequence of injections together, one runs into the fact that one is implicitly using AC to select one injection (or well ordering) at each ordinal below α. | |||
This problem can be fixed by restricting ourselves to just picking one item provided that it is sufficiently large. Choose a single bijection ''f'' from P(ω<sub>α+1</sub>) to ω<sub>α+2</sub>. We will use this to construct a bijection from ''V''<sub>ω+α</sub> to an ordinal between ω<sub>α+1</sub> and ω<sub>α+2</sub>. | |||
Suppose ''S'' is any subset of ω<sub>α+1</sub>. Let ''g''(''S'') = ω<sub>α+2</sub>·rank(''S'') + ''f''(''S''). Let ''h'' be the result of collapsing ''g'' to squeeze out the holes in its image. Let ''l'' be defined inductively on ''V''<sub>ω+α</sub> by ''l''(''T'') = ''h''( { ''l''(''U'') | ''U'' ∈ ''T'' } ). Then ''l'' is the desired injection from ''V''<sub>ω+α</sub> to the ordinals. We use AH again (no use of AC here though) to verify that the elements of rank ω+β are mapped into a range beginning between ω<sub>β</sub> and ω<sub>β+1</sub> and ending between ω<sub>β+1</sub> and ω<sub>β+2</sub>; which fact is needed to make sure that our original choice of ''f'' had a sufficiently large domain. ] (]) 04:53, 6 September 2013 (UTC) | |||
:I'm not sure I follow your proof. The proof in ''Set Theory for the Mathematician'' that PW implies AC is as follows: | |||
:For any fixed α we will show by transfinite recursion on β ≤ α that V<sub>β</sub> can be well-ordered, by constructing a specific relation S<sub>β</sub> (extending S<sub>γ</sub> for γ < β) | |||
:Let λ = ](V<sub>α</sub>) By PW, P(λ) can be well-ordered by a specific relation R | |||
:If β is a limit ordinal (or 0), we can construct <math>S_\beta = \bigcup_{\gamma<\beta}S_\gamma</math>. | |||
:If β = γ+1, then we find the order type of V<sub>γ</sub> under S<sub>γ</sub> is an ordinal δ, and there is a unique order-preserving function f<sub>γ</sub> mapping V<sub>γ</sub> onto δ. As V<sub>γ</sub> is a subset of V<sub>α</sub>, δ < λ We then define a function g from V<sub>β</sub> = P(V<sub>γ</sub>) into P(λ) by | |||
:g<sub>γ</sub>(x) = the range of f<sub>γ</sub> restricted to x. | |||
:Finally, we define S<sub>β</sub> by: | |||
:<math>x S_\beta y = ( x \in V_\gamma \land y \in V_\gamma \land x S_\gamma y ) \lor (x \in V_\gamma \land y \in V_\beta - V_\gamma) \lor (x \in V_\beta - V_\gamma \land y \in V_\beta - V_\gamma \land g_\gamma(x) R g_\gamma(y)) </math> | |||
: | |||
: This proof shows that, for any α, V<sub>α</sub> can be well-ordered. But any set is a subset of some V<sub>α</sub>, so it follows that any set can be well-ordered. — ] ] 10:41, 6 September 2013 (UTC) | |||
:Never mind. Your proof is the same as mine, as we can show (also by transfinite induction) that λ<sub>ω+α</sub> = ω<sub>α+1</sub>. — ] ] 10:54, 6 September 2013 (UTC) | |||
::Yes, that is an essentially similar way of proving it. I especially like the use of Hartog's number as a way of avoiding having to figure out what is large enough domain for ''f''. I wish I had thought of that. ] (]) 06:31, 7 September 2013 (UTC) | |||
== AC and the two versions of GCH == | |||
] made a short remark in a correcting <small>(thank you!)</small> my previous edit. I would like to expand this remark here for two reasons: I want to help others avoid the mistake that I had made; also, perhaps we can add a short form of this remark into the article itself. | |||
I will write Z<sub>0</sub> for ZF without the axiom of foundation and without the axiom of replacement. | |||
There are two versions of GCH: | |||
: GCH<sub>power</sub>: For all sets <math>X</math>, every subset <math>Y\subseteq P(X)</math> of the power set of <math>X</math> either is equinumerous with <math>P(X)</math> or can be injected into <math>X</math>. | |||
: GCH<sub>aleph</sub>: For all ordinals <math>\alpha</math> we have <math>2^{\aleph_\alpha}=\aleph_{\alpha+1}</math>. | |||
* GCH<sub>power</sub> is apparently stronger than GCH<sub>aleph</sub>; the implication GCH<sub>power</sub> <math>\Rightarrow</math> GCH<sub>aleph</sub> is already provable in Z<sub>0</sub>. | |||
* GCH<sub>aleph</sub> implies that | |||
*# ... the power set of every <math>\aleph_\alpha</math> is well-orderable. (trivial, in Z<sub>0</sub>) | |||
*# ... the power set of every well-orderable set is well-orderable. (easy from 1., but needs replacement) | |||
*# ... every set has a well-order. (The implication from 2. is non-trivial but well-known. Needs foundation. The standard proof uses induction of von Neumann's hierarchy.) | |||
*# ... AC holds. (easy from 3.) | |||
*# ... every set is equinumerous with some <math>\aleph_\alpha</math>. (Easy from 4. Replacement used again.) | |||
*# ... GCH<sub>power</sub> holds. | |||
So the two versions are indeed equivalent over the base theory ZF. Still I think that the (apparently) "stronger" version GCH<sub>power</sub> should be mentioned as '''the''' GCH. | |||
When we mention Sierpinski's proof, we should clarify that he proved AC from GCH<sub>power</sub>. | |||
(In ZF, AC also follows from GCH<sub>aleph</sub>, but the interesting part is the implication from "P(well-order)=well-orderable" to AC, which has nothing to do with cardinal arithmetic. Was Sierpinski also the author of this theorem?) | |||
--] (]) 12:48, 12 September 2013 (UTC) | |||
:You ''did'' notice this is discussed in the section above, right?—] ] 13:47, 12 September 2013 (UTC) | |||
Yes, I should have referenced the preceding discussion, and adapted my notation. Sorry. The preceding discussion gives the proof of (1→)2→3. My point is that the different character of the two implications between GCH (GCH<sub>power</sub>) and AH (GCH<sub>aleph</sub>) is not made clear in the article. (But if I cannot make this clear on the discussion page, I won't even try on the article page.) | |||
--] (]) 15:58, 13 September 2013 (UTC) | |||
== ZF & NGB == | |||
The lead has been going back and forth for a few days w/o me being involved except for a revert. Does the lead need to mention NGB set theory? Perhaps so (I have no idea), but in that case, the relationship between ZF and NGB set theories must be described - otherwise it's just confusing. Please discuss it here, it's what the talk page is for. I will not interfere. ] (]) 22:27, 5 January 2014 (UTC) | |||
:I might have added some more details as Eleuther did were it not for the fact that this is the lead which is merely supposed to summarize the article. The details are already available in ] at the second paragraph. Godel's proof can easily be adapted to ZF, so there is no need to complicate things by dragging ] into it. ] (]) 05:12, 6 January 2014 (UTC) | |||
::The key sentence (from ]) seems to be ''A statement in the language of ZFC is provable in NBG if and only if it is provable in ZFC.'' As far as I can tell, two sentences would be needed in the second paragraph if mention of NGB is to be included here. It could also be inserted as a parenthetical remark - or as a "popup" citation; ''Gödel used NGB set theory in which statements are provable if and only if they are provable in ZFC'' - if people feel strongly enough about it. Just a thought. ] (]) 13:47, 6 January 2014 (UTC) | |||
:The problem with the lead is some clumsy prose, which can be improved, and the incorrect off-hand assertion that ZF is "the standard foundation of modern mathematics," which is simply not the case. Most mathematicians grant that set theory has a foundational role, but I doubt that most would go so far as to select a particular axiomatization as "THE" foundation. NBG is an attractive alternative, and there are many others --- it's an area of active research. However, the lead of this article isn't the place to discuss the issue. My initial idea was just to water down the incorrect assertion to "the standard expression of set theory," acknowledging that ZF is the most popular axiomatization. But that was reverted, as was my most recent attempt to simply remove the incorrect assertion. The article seems to be under the protection of a ZF advocate. ] (]) 07:24, 7 January 2014 (UTC) | |||
:: I have to agree partially with Eleuther here, though possibly for different reasons. Calling ZF "the foundation" is a fundamentally formalist POV. Merely claiming that there ''is'' a foundation is a foundationalist POV. This is pretty important in context, because if you call ZF "the" foundation, and then talk about CH being neither provable nor refutable from ZF, then you over-weight the position that CH can't be decided in any way at all, which is controversial. --] (]) 08:10, 7 January 2014 (UTC) | |||
:::I see the point as well. I did the revert because, if the CH and ~CH aren't provable from, say, the axioms of field, then it isn't really interesting. What ''is'' interesting, in fact it's the main point, is that you can bring on most of all of mathematics based on most all of established axioms of set theory and yet fail to prove CH or ~CH. | |||
:::This must be communicated to the reader in the lead. It can surely be done in a neutral tone. As of present, the lead uses common POVs as Trovatore points out (the most common ones I suppose). ] (]) 13:21, 7 January 2014 (UTC) | |||
:::: Yeah, needs thought. I just tweaked the sentence to reverse the order of "proved" and "disproved" and make it clear that they're parallel (this has no implication as to whether a proof or disproof would be more surprising; I just think "proved nor disproved" sounds better than "disproved nor proved"). I took another look at the ZF thing and couldn't immediately think of a good solution. | |||
:::: One more monkey wrench to throw into the mix: If we're going to talk about a particular formal theory, I think ZFC is a better choice than ZF. It's not even completely clear which formulation is the "real CH" in the absence of choice. --] (]) 06:39, 9 January 2014 (UTC) | |||
==="disproved nor proved"=== | |||
JR's point seems to be that Goedel's contribution is listed first and Cohen's second (same as the chronological order). But the unusual word order "disproved nor proved" really does not get this across; it just looks weird. I suggest that if we want to say that Goedel showed it couldn't be disproved in ZFC and Cohen showed it couldn't be proved in ZFC, then that is what needs to be said. But at that level of the lead, I don't know that we need to get that specific, and I think we should just go back to "proved nor disproved". | |||
:Again, it should be ZFC, not ZF. --] (]) 07:41, 9 January 2014 (UTC) | |||
::Yes, ZFC if anything. Also, could we get rid of the annoyingly prudent "if ZF set theory is consistent" clause in the lead? Pathological cases aren't of interest to the general reader (and hardly anyone else). <small>(How on earth has it ''not'' become standard to ''implicitly'' assume consistency in the math lingo.)</small> ] (]) 15:57, 9 January 2014 (UTC) | |||
:::<small>Because it might turn out to be inconsistent.</small> ] (]) 16:00, 9 January 2014 (UTC) | |||
::::<small>Yes, and in the intervening 10<sup>100<sup>1000</sup></sup> years we all have to use awkward language in encyclopedias and elsewhere so that we don't forget.</small> You miss the point. In the rest of the article we could be as precise as we wish, provided the sun rises tomorrow. ] (]) 16:14, 9 January 2014 (UTC) | |||
:::::You appear to be comfortable in your faith that the sun is less likely to rise tomorrow than ZFC is likely to be consistent, and you are certainly entitled to it. However issues of faith may constitute POV and shouldn't necessarily influence issues of content. ] (]) 16:35, 9 January 2014 (UTC) | |||
::::::<small>No, I am not - provided of course that both the sun and ZFC exist.</small> I am just expressing my surprise that mathematics hasn't rationalized its internal language in this case so that it becomes less cumbersome. In most contexts there are ''obvious'' implicit assumptions not spelled out each and every time. If a not very obvious assumption is used ''then'' it is spelled out. ] (]) 18:14, 9 January 2014 (UTC) | |||
:], are you going to address this? I continue to object to "disproved nor proved". The unusual word order gives the reader a problem to solve; the fraction of readers who come up with your intended solution, I expect to be small. There is just no real indication that the word order corresponds to which mathematician did what. I'm concerned that some readers will come up with an unwanted solution, such as losing the parallelism between "disproved" and "proved". --] (]) 23:17, 9 January 2014 (UTC) | |||
::Would "deduced" be better than "proved"? ] (]) 10:10, 13 January 2014 (UTC) | |||
== "a" or "the" standard == | |||
There has been some back-and-forth on whether ZF is "a standard foundation" or "the standard foundation". I feel that using the definite article is a POV. Category theory provides another "standard" foundation, for example. There are other varieties of set theory that are similarly considered "standard" by subsets (no pun intended) of the mathematical public, such as ] or ]. ] (]) 08:23, 9 January 2014 (UTC) | |||
:Yes, as I explained in the section above, I think that needs to change. The notion that mathematics is founded on formalism ''at all'' is itself problematic. (And for the third time, whatever we say about foundational-ness, it should be ZFC, not ZF.) | |||
:How about something like "the most common set of formal axioms for set theory, which can be used to derive most of standard mathematics"? --] (]) 08:28, 9 January 2014 (UTC) | |||
::This would involve explaining that the first occurrence of ''set'' is in a metamathematical sense, whereas the second in the technical sense of set theory :-) Also this seems a bit wordy. So long as one uses the indefinite article we stay away from the claim that mathematics is "founded" on formalism. So all in all "a standard foundation" seems appropriate. ] (]) 09:07, 9 January 2014 (UTC) | |||
:::I agree with all of this. The issue is too complicated to phrase briefly, and anyway, it is out of place in the lead of this article. The simplest approach is just to remove the problematic foundational claim, and replace it with something more neutral, like "the most common axiomatization of set theory." I tried that however, and was reverted. I won't try it again, but I will support it if someone else does it. Ideally, ] would be the one to make the change. ] (]) 10:56, 9 January 2014 (UTC) | |||
::::I think the meaning of "standard" (as opposed to, say, "canonical") is precisely "the most common". I don't think this involves any ontological commitments at all, but is rather an accurate description of current mathematical practice. ] (]) 13:29, 9 January 2014 (UTC) | |||
:::::I disagree. The term "standard" has a lot more weight than "most common." We don't describe the Democratic members of the US Senate as standard, and the Republicans as non-standard. "Standard" implies not just a majority, but a majority consensus that the standard should be accepted as standard for some reason. ] (]) 23:27, 9 January 2014 (UTC) | |||
::::::Agreeing partly with Trovatore, mathematicians just do what they do (informally). Logicians come along later and clean up the mess by formalizing it. So I am not saying that mathematicians refer back to ZFC when they work. Rather what I am saying is that logicians have found that what mathematicians do (in most cases, when they are consistent) can be formalized by the axioms of ZFC. Other foundational systems do not fit so well with what mathematicians actually do. NBG and MK are just slight variations on ZFC. Frankly, I have no intuition for NF (new foundations for set theory) or topos (category theory) so I do not see how they could be the basis of mathematics. ] (]) 09:31, 10 January 2014 (UTC) | |||
::::::: To me, the question is not really about alternative foundations; it's about natural strengthenings of ZFC. ZFC does not decide the issue, but some natural strengthening, the addition of some axiom that we can come to the conclusion is the '''right''' one to add, might. The natural place to start is ]s; it's pretty clear that these axioms (except the ones that turn out to lead to contradictions) are "correct", and their negations are "incorrect". That's why it's misleading to state that we are "free" to add either a statement or its negation to ZFC, if both are consistent; they may both be consistent, but one may be better than the other, in a way similar to the way large-cardinal axioms are better than their negations. | |||
::::::: Now, large-cardinal axioms themselves, at least the sort we know about, do not decide CH either, but that does not settle the matter; there might be other axioms for which we can make the judgment that they are better than their negations, and which do decide CH. --] (]) 09:59, 10 January 2014 (UTC) | |||
::::::: | |||
== "the other axioms of set theory" == | |||
I have expressed qualified support for Eleuther's concerns, but I do not think this latest effort works very well: | |||
:'' In 1963, ] proved that the hypothesis is independent of the other axioms of set theory, based on earlier work by ] in 1940. This surprising result means that one is free to assume that such sets exist or that they do not. Cohen was awarded the ] in 1966 for his proof.'' | |||
The most problematic aspect is the second sentence, which is both of unclear meaning and seriously POV if given any substantive meaning. I have removed that sentence. | |||
But I'm not all that thrilled with the rest of it either, though I agree it is simpler. Mainly I think the phrasing "independent of the other axioms of set theory" is problematic. First, "other" axioms of set theory suggests that CH is an axiom of set theory, which is an unusual position. Then too, " 'the' other axioms of set theory" suggests that there's a canonical list of axioms of set theory, which I thought was Eleuther's complaint in the first place. --] (]) 00:31, 10 January 2014 (UTC) | |||
:If you want input from a non-mathematician (who might still know a little something about math): The lead is not good. It manages to say that CH is independent from the (other) axioms of set theory. The general reader would react with "so what". | |||
:The lead should establish | |||
:*CH is a '''''mathematical''''' statement | |||
:*CH was perhaps the most prestigious mathematical problem of the last century | |||
:*It cannot be proved using (standard) mathematics | |||
:*It cannot be disproved using (standard) mathematics | |||
:*Therefore Hilbert's first problem cannot be solved in it's original form | |||
:The lead should address: | |||
:*Is Hilbert's first problem resolved? | |||
:*Ongoing work towards resolving CH | |||
:The lead is now extremely short. There is plenty of space to beef out a little (on what was the most formidable (yes, POV) mathematical problem of the last century. | |||
:The version of a couple of weeks ago was perhaps bad, but this is decidedly worse. Actually, the main message that the general reader will pick up from the lead is that Cohen got a fields medal. ] (]) 01:22, 10 January 2014 (UTC) | |||
::Actually, I don't think your bullet point about "Hilbert's first problem cannot be solved in its original form" is so clear. Hilbert asked for a proof of CH (the original wording does not seem to have contemplated a disproof, if I remember correctly, but I suppose he would also have accepted that). But he didn't specify any limitations on what axioms might be used, and ZFC had not at the time been formulated, so he could not have meant ZFC. If Woodin's arguments around the year 2000 had eventually been accepted as having established ~CH, would that have satisfied Hilbert? I don't see any way we can know. --] (]) 01:58, 10 January 2014 (UTC) | |||
:::The "bullets" are just bullets, not a draft for a new lead. But surely, there was a notion of "proof" even back in 1900 though we today would probably define "proof" as "proof in ZFC" by default (though it is customary to mention choice if used). I never heard about Hilbert objecting to ZFC (he died 1943) so I don't think the conclusion "Hilbert's first problem cannot be solved in it's original form" is too wrong or too unsupported or uncontroversial. Also, your discussion above could (in modified form) provide some content for bullets #5 and #6. Woodins and others work in the modern era is precisely the thing I mean with the last bullet. | |||
:::I maintain that the lead must not be totally impeccable technically, or even impeccable POV-wise provided the most common POV is used, if that hinders just about everything interesting to be even mentioned. ] (]) 02:56, 10 January 2014 (UTC) | |||
:::: Here's the point: What the independence result says is that you can't decide CH if you're limited to certain axioms. It's certainly interesting that that collection of axioms is sufficient to formalize virtually all of "normal" math, and still doesn't decide CH. But it doesn't follow, by itself, that you can't decide CH in some other way, if you're ''not'' limited to those axioms. | |||
:::: So the question is not at all whether Hilbert would have "objected" to ZFC (meaning, presumably, objected to one or more of the axioms), but whether his question was constrained to using ''only'' ZFC, and not more. And clearly, given that ZFC had not been formulated, the question could not have been constrained to using exactly ZFC. So you would have to argue that Hilbert was implicitly placing limitations that would constrain his methods to be less-than-or-equal-to ZFC, and while that may be true, I don't see how you establish it. | |||
:::: The lead must not over-weight the position that CH is "absolutely undecidable". I think the best way to avoid it is to call out a set of axioms explicitly, as the old lead did, but explain that that set is enough to do most "normal" math but not decide CH. --] (]) 03:10, 10 January 2014 (UTC) | |||
::::: I understand what you mean, and again your answer contains some substance that could go into the article. I agree that the former lead was better, in the sense that it was explicit about at least ''something''. I suggest your version of 00:13 January 10 is moved back for now. ] (]) 04:40, 10 January 2014 (UTC) | |||
== restoring ZFC in the lede == | |||
The recent removal of the mention of ZFC from the lead is misguided. The question of CH can only be made precise in the context of ZFC (or ZF) and this should be mentioned. I have the impression that only one editor opposes the inclusion of such an explicit mention. It would be nice if the editors expressed themselves on this limited point. ] (]) 09:25, 10 January 2014 (UTC) | |||
:Well, I don't think I agree with your second sentence (CH is a precise question in the context of informal set theory; you don't have to specify any formalization). But I do agree with your first sentence; without a formalization, CH ''per se'' makes sense, but the ''independence'' of CH does not, because independence is a negative result ("it cannot be proved"), and to establish such a result, you can't really get started without a precise limitation on the ''methods'' of proof. --] (]) 10:12, 10 January 2014 (UTC) | |||
::Yes, restore ZFC. B t w, did Cohen base his work on that of Gödel? (The current lead says so.) ] (]) 10:26, 10 January 2014 (UTC) | |||
:::Um, in a certain sense. The original version of ] was a modification of the construction of Goedel's ], which was the (class) model used to establish the consistency of CH. The original version was called ''ramified forcing'', and I don't really know much about it, because it is generally not taught now. Within a few years the "ramified" part was found to be more trouble than it was worth; modern, unramified forcing no longer looks much like the levels of L. | |||
:::Still, it's the first time I've ever heard anyone take the view that Cohen's proof was an extension of Goedel's; I'd have to think about it, but off the top of my head I don't think that's true in any very interesting way. (In an uninteresting way, pretty much ''all'' set theory done at that time was "based" on Goedel's work, because Goedel was the first person to really do serious set-theory-as-set-theory beyond what in retrospect, with no disrespect to the brilliant men who developed them, we can call "elementary methods".) --] (]) 10:40, 10 January 2014 (UTC) | |||
::::Gödel showed that CH is consistent with NBG. That was the first hard part of the Hilbert problem. Cohen then assumed Gödel's result, and incorporated it in his proof of the independence of CH from ZF (ZF being a proper subset of NBG), the second hard part. That's the sense in which Cohen's proof is an extension of Gödel's -- Cohen openly assumed and used Gödel's result. That's also the sense in which I said "based on" in the modified lead. If this is the first time you've heard of it, I think you haven't read the proofs very well. ] (]) 10:46, 12 January 2014 (UTC) | |||
::::To be more clear, to show that CH is independent of ZF, one must show that both CH and not-CH are consistent with ZF. Gödel proved the first part in 1940, Cohen the second in 1963. ] (]) 12:31, 12 January 2014 (UTC) | |||
::::::It did occur to me that you might be using "based on" in that sense, but in that case I don't think it's very good wording. If you have a result that breaks naturally into two pieces, as here, and one researcher proves one piece and then another finishes it off later by proving the other, I think that's the better description. You say Cohen "assumed" Goedel's result, but that's a very odd way of putting it; Cohen's proof stands alone as a proof of Con(ZFC+¬CH). There is no need to "assume" Con(ZFC+CH) in that proof. --] (]) 17:43, 12 January 2014 (UTC) | |||
:::::::I replaced "based on" by "complementing", hope this is better. ] (]) 10:06, 13 January 2014 (UTC) | |||
:::::] has already made three reverts of the material in the introduction. Continuing this behavior may end you up in a block. ] (]) 13:10, 12 January 2014 (UTC) | |||
== Multiverse approach to set theory == | |||
I may be old-fashioned, but I don't see the specific relevance of Hampkins' paper to CH; although I haven't yet read a the paper, it would seem to apply to ''any'' independent (in some sense) statement, not just CH. | |||
Even assuming the paper is considered significant in the field. — ] ] 13:51, 27 January 2014 (UTC) | |||
:Hamkins has a more general notion of a "switch", namely an axiom that can be adjusted at will to either be satisfied or violated (like the CH) by passing to a larger model. However, his discussion does tend to center on CH, and has immediate relevance to the philosophical debate around CH. ] (]) 15:43, 27 January 2014 (UTC) | |||
== Danger in Bibliography == | |||
The book: | |||
Cohen, P. J. (1966). Set Theory and the Continuum Hypothesis. W. A. Benjamin. | |||
is not accessible: you can request it, pay for it and the there is no book and no refunds. | |||
Suspicious? <span style="font-size: smaller;" class="autosigned">— Preceding ] comment added by ] (]) 09:00, 30 June 2014 (UTC)</span><!-- Template:Unsigned IP --> <!--Autosigned by SineBot--> | |||
:Buyer beware. Before you pay out money, you should make sure that the book-seller you are dealing with is reputable. If the book is out-of-print, then the book-seller should have told you that rather than taking your money and stiffing you. ] (]) 04:49, 1 July 2014 (UTC) | |||
::Perhaps "Cohen, Paul Joseph (1966). Set theory and the continuum hypothesis. Addison–Wesley. {{ISBN|0-8053-2327-9}}." was meant? ] (]) 05:08, 1 July 2014 (UTC) | |||
== Description in first line == | |||
The first line of the article reads: "In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis, advanced by Georg Cantor in 1878, about the possible sizes of infinite sets." | |||
While it's traditionally named the "continuum hypothesis," does it really make sense to refer to it explicitly as a "hypothesis" (including a link to the article for "hypothesis," no less)? "Hypothesis" generally refers to a testable predictive claim about a system - given that the "truth" of CH is provably independent of the standard axiomatization of mathematics (and thus we can, in a way, think of CH as a specification of a system we're working with, not a claim about the properties of an established system), this seems like a poor description. It certainly doesn't make sense to link to the article for "hypothesis," any more than it would to do the same from the description of the axiom of choice or the parallel line postulate - both of which, incidentally, are (correctly) referred to as "axioms" as I believe should be the case here. | |||
] (]) 20:29, 9 September 2014 (UTC) | |||
:The "system" (that is, structure) about which CH makes a claim is well-specified — just not in first-order logic. Not everyone agrees with that claim, but very few count CH as an "axiom", though they may use that term for certain propositions that ''imply'' CH. | |||
:This talk page is not the place to have the philosophical debate about whether CH has a definite truth value, but it is reasonable to discuss whether "hypothesis" should be wikilinked. I tend to agree that it should not be, mostly because it's not a very natural spot in the text for a reader to want to say "oh, at this point I want to go read about hypotheses in general". I'll go ahead and unlink it. --] (]) 20:43, 9 September 2014 (UTC) | |||
== Recent edits == | |||
It's not a big deal, but I think that the recent edits have been for the worse. The size of a set ''is'', in informal terms, its cardinality. The lead can, at this point, stay informal, the term ''cardinality'' coming one sentence later. The article now links ], not ]. Worse, it speaks of sets with infinite elements. ] (]) 13:16, 14 November 2014 (UTC) | |||
:I agree. It violates ]. We should keep the wording in the lead as simple as possible, even at the expense of precision, and save the more precise wording for later. Size vs cardinality is an example of that. I would be in favor of reverting to the earlier wording. —] (]) 16:08, 14 November 2014 (UTC) | |||
== Proposed Things to Add == | |||
''Moved to ].'' | |||
== Improved example requested == | |||
Can a better example for bijection be provided? The example given, "Hence, the set {banana, apple, pear} has the same cardinality as {yellow, red, green}." lists three fruits that exist in more than one of the colors given. | |||
] (]) 14:17, 6 November 2016 (UTC) | |||
:There also exists several distinct bijections. ] (]) 14:20, 8 November 2016 (UTC) | |||
== Proof ? == | |||
The "independence" section is just a list of references, which should be moved to the history section. The independedence section should have an outline of the actual proof instead, Misplaced Pages is supposed to contain facts rather than just references. Can anyone knowledgeable make a go at doing this ? <!-- Template:Unsigned IP --><small class="autosigned">— Preceding ] comment added by ] (]) 08:49, 5 May 2017 (UTC)</small> <!--Autosigned by SineBot--> | |||
:I think the independence section sketches the history of how independence was proved, and some of its consequences. The independence proof, while completely standard at the graduate level, is too long to be sketched in any detail here. On one hand it is necessary to develop enough of the theory of L to show CH is consistent with ZFC: on the other it is necessary to develop enough of the theory of forcing to show CH is unprovable. Neither of those can be done in the space of an encyclopedia article. | |||
:The article here is meant to give an overview of CH - an encyclopedia entry - rather than to present a full textbook presentation. It is possible to add a one-sentence summary of each of the halves of the proof, and I've put some initial ones into the article now. My experience on Misplaced Pages is that trying to "sketch" nontrivial proofs tends to cause more confusion than it solves. We are simply not the correct place for lengthy technical mathematics. — Carl <small>(] · ])</small> 10:54, 5 May 2017 (UTC) | |||
== "equivalently ... i.e. it (the cardinality of the set of real numbers) equals the cardinality of the power set of the integers" == | |||
Is saying that <math>|\mathbb R| = |\mathcal P (\mathbb N )|</math> really equivalent to the continuum hypothesis? There seems to be a bijection between the set of real numbers and powerset of the natural numbers ], which would imply the continuum hypothesis is true if they were equivalent. --] (]) 00:03, 10 July 2017 (UTC) | |||
:Thanks for pointing out that error. I tried to fix it. ] (]) 02:33, 10 July 2017 (UTC) | |||
== Malliaris and Shelah == | |||
There is a recent study by these authors which has been widely reported in the press, and seems highly relevant to the CH. I'm not a mathematician, so the technicalities are beyond me, and I was hoping to find a clear explanation in this article. There's a summary here: https://www.scientificamerican.com/article/mathematicians-measure-infinities-and-find-theyre-equal/ <!-- Template:Unsigned IP --><small class="autosigned">— Preceding ] comment added by ] (]) 19:42, 16 September 2017 (UTC)</small> <!--Autosigned by SineBot--> | |||
:They proved that a certain pair of infinite cardinals are equal. It was previously thought that whether they were equal would depend on the continuum hypothesis, but it doesn't. So this publication made the question they studied less relevant to CH, not more, I think. —] (]) 19:53, 16 September 2017 (UTC) | |||
::Yeah, I would quibble with David's analysis in only one way, which is that I think it was pretty much irrelevant even before the result. | |||
::The question relates to two "cardinal invariants" (our article is at ], which I have to admit is a more accurate name, even if longer-winded). That's a bunch of named cardinals that are all known to be at least ℵ<sub>1</sub> and at most '''c'''. So if CH is true, that is, if ℵ<sub>1</sub>='''c''', then the whole theory trivializes. These two particular invariants '''p''' and '''t''' are not particularly special in that way. --] (]) 04:51, 18 September 2017 (UTC) | |||
::<small>I hope it's clear that I'm not disparaging the result in any way. It just doesn't have much to do specifically with CH. --] (]) 05:56, 18 September 2017 (UTC) </small> | |||
:::I didn't know there was a name and article for these cardinalities, so thanks — I learned something from this conversation after all. I added a link to the cardinal characteristic article on ], but perhaps it could be integrated better into the article, so if you want to give it a shot go ahead. Conversely, perhaps the work of Malliaris and Shelah should be mentioned at the cardinal characteristic article. (There's an older reference by Shelah but none of the new results.) —] (]) 17:33, 18 September 2017 (UTC) | |||
== Conjecture or Hypothesis? == | |||
Should this "hypothesis" be categorized under ] rather than ]? Or should the definitions of those categories include historical naming that goes against current convention. Perhaps the article should be renamed (with a redirect). ] (]) 21:49, 28 December 2017 (UTC) | |||
:This article is not going to be renamed. Zero chance. The proposition is universally called the "continuum hypothesis" and that's what matters. Any requested move would be ]ed. | |||
:As for the categories, I suppose it could plausibly be in both of them. --] (]) 22:26, 28 December 2017 (UTC) | |||
::I don't think it fits either category. We should categorize things by what they are, not by what they are named. ] is for scientific hypotheses, statements that are testable by the scientific method; the continuum hypothesis is not testable in this way. And ] is for a specific class of mathematical statements, the ones that some mathematicians are convinced to be true but for which a proof is unknown, giving an unsolved problem for future research. In contrast, the existence of a proof for the continuum hypothesis is a settled question (there isn't one, in ZFC, unless the whole thing collapses in a pile of self-contradiction). It is currently listed in ] but that category is too small and oxymoronic to survive. A better choice would be ]. —] (]) 22:48, 28 December 2017 (UTC) | |||
:::Well, CH ''is'' an unsolved problem for future research, and it's not an "axiom". --] (]) 23:50, 28 December 2017 (UTC) | |||
::::What's unsolved about it? We know that it's true in some models and false in others. It makes no sense to ask whether it's "really" true, in "the real world", since the real world isn't a mathematical abstraction. So what more could you want to know that might be amenable to proof? —] (]) 00:31, 29 December 2017 (UTC) | |||
::::: Well look, ZFC is not the starting point. The starting point is the cumulative hierarchy; that's what we want to know things about. We will never prove or disprove CH from ZFC, but we might be able to figure out whether it's true in the cumulative hierarchy. | |||
::::: To a realist, that question (whether CH is true in the cumulative hierarchy) is completely well-specified. If you're not a realist, then maybe you don't think it is completely well-specified, but it is still open to examination whether the picture of the cumulative hierarchy might justify (or at least motivate) extensions of ZFC that decide CH. --] (]) 00:52, 29 December 2017 (UTC) | |||
::::::What makes the cumulative hierarchy special among all the other models one might choose? Do you also insist that for statements of arithmetic, we want to know whether they are true only for the field of algebraic numbers and not for any other field? —] (]) 02:10, 29 December 2017 (UTC) | |||
:::::::I'm not sure I'm quite following you here. To me "arithmetic" means the theory of the natural numbers. The parallel is that the natural numbers are not defined by axioms; rather, we have a mental picture of the naturals that we ''start'' with, and justify the axioms in terms of that picture. Set theory is also like that. --] (]) 02:19, 29 December 2017 (UTC) | |||
== wording in section on "cardinality of infinite sets" == | |||
I have limited math understanding, but can I risk asking a possibly pedantic question: should the sentence | |||
"That is, every set, S, of real numbers can either be mapped one-to-one into the integers or the real numbers can be mapped one-to-one into S." be changed to say "infinite set S" or should something about "subsets" be inserted somewhere? ] (]) 11:33, 21 February 2019 (UTC)johnjPerth | |||
:It says "one-to-one ''into'' the integers", so finite sets are OK. If it said "one-to-one ''onto'' the integers", you'd be correct. That said, if it's that easy to misunderstand, maybe we should change the wording. | |||
:<s>As it stands, the statement is not quite correct, because if S is empty, then the reals can't be mapped onto S. </s>--] (]) 19:32, 21 February 2019 (UTC) | |||
:Oops — strike the last sentence. Not sure what I was thinking. --] (]) 19:37, 21 February 2019 (UTC) | |||
== Lecture slides == | |||
Explains Cohen's proof of independence of CH. It looks pretty self contained yet is short enough for one lecture. I'm going to try to read it since other places have made the proof sound very mysterious and I have never understood it. Leaving link here for future reference and for possible use in improving the article. ] (]) 05:17, 18 August 2020 (UTC) | |||
:The proof is not terribly mysterious. There is a lot of machinery to build and a lot of details to check, but the basic idea is straightforward. Something of that definitely could, and probably should, be conveyed in this article. We would want to be careful not to let it get out of hand; this isn't the article in which to explain forcing in detail. But we can probably say more than what the article currently says, which is ''Essentially, this method begins with a model of ZF in which CH holds, and constructs another model which contains more sets than the original, in a way that CH does not hold in the new model.'' That single sentence also does not really stand out. --] (]) 05:29, 18 August 2020 (UTC) | |||
::Thanks. Those slides seem easier to understand than the current article ], maybe because the terminology is more familiar. Maybe the forcing article could be updated a little from it. ] (]) 00:06, 22 August 2020 (UTC) | |||
== 𝔭 = 𝔱 == | |||
I've just seen , which lead me to the papers and , and then . All of this is way over my head, mathematically. I'm uncertain about exactly what the proof of 𝔭 = 𝔱 actually means, and its relationship to the topic of this article. Does this now-proven hypothesis have a name, and what is the relationship of this proof to the continuum hypothesis? -- ] (]) 13:18, 31 December 2020 (UTC) | |||
:This is one of those things where there's a genuinely interesting result, but where the headlines make it sound much more spectacular than it actually is. | |||
:These symbols 𝔭 and 𝔱 are names for two ], more typically called "cardinal invariants. Such invariants are things like | |||
::''So we know that every countable set of reals is measure 0. On the other hand, there are sets of reals that are not of measure 0, say, the unit interval. All these obvious ones have cardinality <math>2^{\aleph_0}</math>.'' | |||
::''But suppose CH is false, and <math>2^{\aleph_0}>\aleph_1</math>? Then, is there a set of size <math>\aleph_1</math> that does not have measure 0? In general, what's the smallest κ such that there's a set of size κ that is not of measure 0? Let's give that κ a name.'' | |||
:So there are a whole bunch of these thingies that have been identified. If CH is true, then they all equal <math>\aleph_1</math>, and the theory trivializes. | |||
:So 𝔭 and 𝔱 are two of these gadgets. If CH is true, then trivially 𝔭=𝔱. But before the result you're looking at, it was thought that it was likely to be consistent with ZFC that 𝔭 != 𝔱, as long as CH was false. Now we know that's not true. | |||
:Getting back to your question, what does this have to do with the topic of this article? I'd say not very much. I hope I've clarified the extent to which a connection does exist. --] (]) 21:08, 31 December 2020 (UTC) | |||
:<br>Here's one connection you could arguably make. Suppose there were a mathematician who thought, "I think I can see intuitively that 𝔭 < 𝔱. Or maybe I just think it would be nicer if 𝔭 < 𝔱, and I want to add it as an axiom or something. Therefore I must reject CH." | |||
:Such a mathematician would then have to admit that this argument doesn't work (at least if he/she accepts ZFC). | |||
:However I am not aware of anyone who took the view that CH should be false because 𝔭 should be less than 𝔱. So my view is still that there is not much connection with this article. --] (]) 21:33, 31 December 2020 (UTC) | |||
== Update == | |||
I just came across this article about a new mathematical proof implying that the hypothesis is true. But I don't understand the subject matter well enough to add it to the page in a sensible manner, perhaps someone else can take a gander? | |||
Here's the article that might be worth including: https://www.quantamagazine.org/how-many-numbers-exist-infinity-proof-moves-math-closer-to-an-answer-20210715/ | |||
Cheers] (]) 13:42, 6 August 2021 (UTC) | |||
:All this shows is an equivalence between two other axioms for set theory. While this doesn't directly prove anything about the continuum hypothesis, the article in question goes as far as to say this "result strengthens the case against the continuum hypothesis", not for the continuum hypothesis as you have suggested. I dont know enough about the subject matter to decide if this article is relevant to this wikipedia article though. ] (]) 00:56, 7 April 2022 (UTC) | |||
== This conjecture is true. == | |||
Since this conjecture is "a conjecture which can be disproved using a counterexample", if this conjecture is in fact false, we can use this counterexample to disprove it, thus the conjecture is decidable, and if the conjecture is undecidable, then it must be true, thus, if we can prove that this conjecture is undecidable, then we can prove that this conjecture is true, which is a contradiction, like ] (a counterexample is an even number ≥4 which cannot be written as sum of two primes), ] (a counterexample is an integer ''n''≥3 and positive integers ''x'', ''y'', ''z'' such that ''x''<sup>''n''</sup> + ''y''<sup>''n''</sup> = ''z''<sup>''n''</sup>), ] (a counterexample is a complex number ''z'' such that ''Re''(''z'') ≠ 0, ''Im''(''z'') ≠ 1/2, but ζ(''z'') = 0), and ] (a counterexample is a graph which cannot be drawn using ≤4 colors), a counterexample of continuum hypothesis is a subset ''S'' of ''R'' such that Card(''S'') > Card(''N'') and Card(''S'') < Card(''R''). ] (]) 09:25, 20 August 2021 (UTC) | |||
:You are wrong. Even if such a set ''S'' exists, it cannot be exhibited and its required properties verified in a manner which is independent of the model of set theory within which one is working. ] (]) 16:39, 20 August 2021 (UTC) | |||
:<br>Per the ], we're actually not supposed to discuss this here, but it would be a very interesting topic at the ]. Would you be interested in raising it there? Remember to state it in the form of a question, like on Jeopardy. --] (]) 17:57, 20 August 2021 (UTC) |
Latest revision as of 20:40, 22 November 2024
This is an archive of past discussions about Continuum hypothesis. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. |
Archive 1 | Archive 2 |
Practical consequences?
Are there any "practical consequences" of presuming CH (or GCH) to be true or false? For example, are there any theorems which can be proved by presuming CH to be true or by presuming it to be false, but for which the proof is much simpler if we presume CH to be true, (or vice versa). -- SJK
In set theory and analysis, there are many statements which could be proven if GCH is assumed, and could be disproven if GCH fails. I don't have any examples right now. I don't know if there are theorems whose proofs get simpler by assuming GCH. --AxelBoldt
There are. I don't remember any examples, but I distinctly remember moaning "if only we could just use GCH..." doing a proof on an assignment. --
I don't remember ever needing the continuum hypothesis. A list of examples is sorely needed in the article, otherwise the paragraph about "substantial results" should be deleted. Also, since the GCH implies the axiom of choice, it is much more likely that just the axiom of choice would suffice. -- Miguel
Under CH, there exists bounded functions from the unit square into R, which are measurable in each coordinate, but so that the functions is not integrable. It is consistent with ZFC that no such function exists. (So CH is necessary.) Although if you permute any of the conditions slightly, the situation can be resolved in ZFC.
There are plenty of things known to be independent of ZFC but which don't line up so nicely with CH. (Kaplansky's problem and the Whitehead problem are two good examples.) --
Gödel's incompleteness theorems only say that if proof is identified with first-order logical derivation, then any consistent axiomatization will be incomplete. But his proof of the first theorem has two parts: the first proves that his wff U is unprovable; the second gives a proof of U (or rather its interpretation in N). The statement, "This statement is not first-order derivable from the given axioms" is surely provable, though not first-order derivable.
Likewise, CH has not been shown unprovable, but only underivable from ZFC.
Chris Freiling's "Axioms of Symmetry: Throwing Darts at the Real Number Line" (Journal of Symbolic Logic Vol. 51, Iss. 1, pp. 190-200) presents a (rather philosophical) argument against CH. --Archibald Fitzchesterfield
Yes, that's a good paper, I'll add it to the list of references. --AxelBoldt
I find this article ot be hard to understand. I had to go through several other articles to even understand what it was about. Maybe someone should add a short informal summary that explains what the continuum hypothesis means that is also easier to understand. Right now I'd guess that if you understand the article you already know what the continuum hypothesis is. The article then loses a big part of its use. -XeoX
- better?
Is Chris Freiling's "statement about probabilities" Freiling's Axiom of Symmetry? If so, somebody should add a link.
techniccalyy there aren fractal dimensions that are applicableto set theory and cardinallity that raise questions as to whether Cantors statment
'There is no set whose size is strictly between that of the integers and that of the real numbers.'
is correct
---
Removed statement that it would be impossible to prove that ZF contains a contradiction.
Roadrunner 21:59, 20 Apr 2004 (UTC)
---
I've been told that logicians now have reason to think that the "continuum hypothesis is false." Apparently the situation is that people basically want to take the axiom of projective determinancy, and it's now been shown that the axiom of projective determinacy impiles the negation of the contiuum hypothesis. I'll have to leave editing the article to someone who actually knows what's going on.
I found a relevant link: http://math.berkeley.edu/~woodin/talks/Lectures.html
---
Absolutely, Woodin's work is relevant, and should be referred to somewhere in the article. Unfortunately it's rather hard to summarize in a way that would make much sense to more than, at a generous estimate, 1000 people in the world.
Projective determinacy does not in fact imply the negation of CH (ZFC+PD+CH is consistent, assuming ZFC+PD is itself consistent). Rather, Woodin offers PD as an example of a proposition that has a kind of indestructibility via forcing. Woodin proposes an allegedly similar sort of stability under forcing for the theory of (I think) , and argues that this stability implies ~CH. Or something like that. I'm pretty fuzzy on the details myself. --Trovatore 00:43, 26 Jun 2005 (UTC)
So I didn't try to explain it, just added the ref and pointed the reader to it. Trovatore 05:04, 27 Jun 2005 (UTC)
Change hyperlink?
Shouldn't "Zermelo-Fränkel set theory axiom system" be a hyperlink to Zermelo-Fraenkel set theory instead of Axiomatic set theory?
Simplifying the language a bit
Quoting from the Manual of style:
Do not assume that your reader is familiar with the acronym or abbreviation you are using. The standard writing style is to spell out the acronym or abbreviation on the first reference (wikilinked if appropriate) and then show the acronym or abbreviation after it.
I say this because it took me about 10 seconds to realise that in ZF + GCH ⊦AC, AC stood for Axiom of Choice. I daresay there are a number of people who want to understand this article but wouldn't even know what ⊦ means (especially if they don't know to check an article about formal logic). Perhaps the first reference to Zemillo-Frankael should include (ZF) after it, and likewise include a brief statement somewhere that ZF + Axiom of Choice (AC) = ZFC. Confusing Manifestation 02:26, 24 February 2006 (UTC)
Quote by Martin
I removed the quote by Martin, since I dislike attaching someone's name to comments that have since been disavowed. I don't know if an official transcript of the Atlanta discussion was ever published. (I was there but only remember generalities, and the bandage on Cohen's head.) The closest thing to a transcript I could find on the web was here on the FOM list, but that summary was probably not reviewed by the speakers themselves. It does state that Martin retracted the quote from his 1976 paper. CMummert · talk 20:47, 5 February 2007 (UTC)
- I think the bit about the axiom of determinacy is misleading; I'd take it out. It's true that AD implies a weak version of CH (namely that there's no cardinality strictly intermediate between and , but it does not imply , and in my view it's the latter that should be thought of as CH in non-AC or not-necessarily-AC contexts. (For one thing it's simpler in descriptive-set-theoretic terms, versus .) --Trovatore 20:54, 5 February 2007 (UTC)
- Feel free to edit that section any way you like. My goal was mainly to get the "CH has no truth value at all" opinion into the article. The quote by Martin seemed like an easy way, since I already had that book out from the library. I'm sure there are other places where the entire section can be worked on. CMummert · talk 21:07, 5 February 2007 (UTC)
- (Bumping, because I think it's relevent, re discussion in Talk:Axiom of choice).
- I think AH(α)
- and CH(ℵα)
- are both plausible interpretations of CH, in the absence of AC. They are not equivalent, even for α=0. — Arthur Rubin | (talk) 22:36, 21 May 2007 (UTC)
- Feel free to edit that section any way you like. My goal was mainly to get the "CH has no truth value at all" opinion into the article. The quote by Martin seemed like an easy way, since I already had that book out from the library. I'm sure there are other places where the entire section can be worked on. CMummert · talk 21:07, 5 February 2007 (UTC)
CH and Zorn's lemma
What is the easiest/quickest way to understand how CH is independent of AC? Rather, what is the easiest, most direct reference that still gives a rigorous exposition? I'm staring at something that involves Zorn's lemma, it seems CH-like, and I am confused about what I'm looking at. linas 04:18, 8 April 2007 (UTC)
- It depends on what you mean by independent. To see why either CH or not CH can hold when AC holds, you need to read about L and about forcing. Unfortunately, I don't know of any undergrad-level expositions. You can start with the WP articles or with this expository essay. Kunen's book is a standard formal treatment that includes the details. CMummert · talk 13:06, 8 April 2007 (UTC)
Otheruses template
I added {{otheruses4}} in case somebody came here looking for this, but the parameters I used were kind of clunky and I don't think they read well. Feel free to change them. --superioridad 23:17, 11 May 2007 (UTC)
- Wow, learn something new every day. I wasn't aware of this meaning of "continuum hypothesis" but it seems to be well attested. Can't think of any tweaks to the message that would be obvious improvements, at the moment. --Trovatore 08:00, 12 May 2007 (UTC)
- I hadn't heard of it until today, either. I went to the fluid mechanics page from a recent Wired article on bad writing in Misplaced Pages science articles, saw that section, and figured that this article could do with the dab link. --superioridad 09:58, 12 May 2007 (UTC)
Contradiction ?
...and he showed that the set of integers is strictly smaller than the set of real numbers...
This is equivalent to:
I feel like there is something wrong somewhere. If it is smaller, it is not equal, right ? --86.215.106.35 23:35, 14 August 2007 (UTC)
- Possibly the text could be more clear. He showed the set of integers is strictly smaller than the set of real numbers. What the continuum hypothesis states is different from that; it states that there is no set S such that yada yada yada. This (the latter "this") is equivalent to . Do you understand it now? If so, would you like to take a crack at rewording in such a way that it wouldn't have confused you the first time? That would be a valuable service. --Trovatore 23:43, 14 August 2007 (UTC)
- I made an attempt at expanding it. I think the middle part may be a little long, the part on equivalent formulations, but I left it. I was thinking of moving it to a lower section. — Carl (CBM · talk) 01:26, 15 August 2007 (UTC)
Powerset cardinality
Do we need the CH to prove that
for infinite cardinals? --Michael C. Price 12:01, 31 August 2007 (UTC)
- GCH is adequate for that. Shelah's general results on cardinal exponentiation has shown, among other things, that it is consistent with ZF that:
- , , ,
- so that CH is not adequate. On the other hand, it is consistent that:
- , , for limit ordinals
- so the above statement does not imply GCH. — Arthur Rubin | (talk) 12:54, 31 August 2007 (UTC)
- I did mean GCH, not CH. Thanks for the results -- most interesting. (That was ZF+AC, I assume?) Thanks also for the pointer to Saharon Shelah. Do you have any arXiv links for his relevant papers? --Michael C. Price 15:17, 31 August 2007 (UTC)
- The quoted result is Easton's theorem, not Shelah's. Kope 15:38, 31 August 2007 (UTC)
- Exactly. That theorem states that, for regular cardinals, the only restrictions on the continuum function are weak monotonicity (α ≤ β → 2^α ≤ 2^β) and Konig's theorem (set theory) (α < cf 2^α). Any possible arrangement of regular cardinals and their powersets that meets these requirements is consistent with ZFC. This is a forcing proof covered both in Jech's book and Kunen's book on set theory. — Carl (CBM · talk) 16:58, 31 August 2007 (UTC)
Thanks everybody. Looks like a pretty good reason for assuming GCH. --Michael C. Price 17:20, 31 August 2007 (UTC)
- How ya figure? --Trovatore 00:06, 1 September 2007 (UTC)
- Since we need the GCH to demonstrate
- which seems intuitively obvious. Ergo to reject the GCH is to accept "unreasonable" propositions, such as .--Michael C. Price 01:19, 1 September 2007 (UTC)
- Well, the strong monotonicity does seem like a natural enough thing to expect, by analogy with the finite case, but I think if you break it down it's a bit too complicated to claim any direct intuitions about. The proper forcing axiom implies that . I think PFA might be accepted as true by those set theorists who find Woodin's arguments convincing (the ones about Ω-logic) but I'm a little hazy on that point. --Trovatore 02:30, 1 September 2007 (UTC)
- Intuition is a subjective thing; I'm just saying how it looks to me. But there again, what better guide is there to the acceptance of axioms? --Michael C. Price 14:39, 1 September 2007 (UTC)
- Well, the strong monotonicity does seem like a natural enough thing to expect, by analogy with the finite case, but I think if you break it down it's a bit too complicated to claim any direct intuitions about. The proper forcing axiom implies that . I think PFA might be accepted as true by those set theorists who find Woodin's arguments convincing (the ones about Ω-logic) but I'm a little hazy on that point. --Trovatore 02:30, 1 September 2007 (UTC)
- I can see that strong monotonicity has an appeal from a naive point of view, but I do not know any source that suggests strong monotonicity as an intuitively obvious axiom.
- Strong monotonicity is infinitely weaker than GCH. If you convince me that strong monotonicity should "obviously" hold, you are still far away from convincing me that GCH (or any other cardinal arithmetic implying strong monotonicity, such as for all successor ordinals α, plus SCH) is obvious.
- --Aleph4 17:38, 1 September 2007 (UTC)
- Fair enough, I see your point. Leaving aside the issue of axiomatic plausibility, does anyone object to a statement about strong monotonicity appearing in the "Implications of GCH for cardinal exponentiation" section? Is it fair to say that the addition of GCH to ZFC converts to the stronger ? --Michael C. Price 07:59, 2 September 2007 (UTC)
- That seems like a reasonable point to make. I don't much like the wording "converts", though. From the extra assumption, you can prove the stronger theorem -- that's the way I'd word it. --Trovatore 05:44, 3 September 2007 (UTC)
- Done as suggested. I also said that the weak monotonic theorem was a consequence of Easton's theorem, since that seems the consensus here. --Michael C. Price 08:31, 3 September 2007 (UTC)
- That seems like a reasonable point to make. I don't much like the wording "converts", though. From the extra assumption, you can prove the stronger theorem -- that's the way I'd word it. --Trovatore 05:44, 3 September 2007 (UTC)
- Fair enough, I see your point. Leaving aside the issue of axiomatic plausibility, does anyone object to a statement about strong monotonicity appearing in the "Implications of GCH for cardinal exponentiation" section? Is it fair to say that the addition of GCH to ZFC converts to the stronger ? --Michael C. Price 07:59, 2 September 2007 (UTC)
I wonder if we can, in the absence of GCH, strengthen the statement to the stronger , since A = B seems to induce a bijection between their powersets, yielding ? --Michael C. Price 07:02, 16 September 2007 (UTC)
- So the statement is certainly a theorem of ZFC without needing GCH (and indeed you could drop AC and probably Replacement as well). But I don't see how it's a "stronger" statement. When you strengthen the hypothesis and get the same conclusion, you weaken the theorem, not strengthen it. --Trovatore 07:08, 16 September 2007 (UTC)
- Thanks for correction. What about the article? If we accept all statements not excluded by Easton's & Konig's theorems are compatible with ZFC then the current article implies that is possible for some A & B. --Michael C. Price 07:34, 16 September 2007 (UTC)
- I don't know if I follow. You can get from to by logic alone (it's one of the properties of identity; "law of substitution" or something like that). You don't need any set theory at all. I guess to refute the proposition above you do need to know that a cardinal is not less than itself. --Trovatore 07:49, 16 September 2007 (UTC)
- I agree that implies . But my point is statements obvious to you (or even me) are not obvious to the general reader. Perhaps a few examples (such as Arthur's) culled from the talk page would help the article.--Michael C. Price 08:00, 16 September 2007 (UTC)
- Wait a minute, there's a subtlety here. You agree with the implication, but do you understand that it follows by logic alone, with no need for any set theory? What you said earlier was A = B seems to induce a bijection between their powersets, which is true, but uses set theory. --Trovatore 18:03, 16 September 2007 (UTC)
- Well, if you read the = symbol as "has the same cardinality" rather than intensional equality,... But it's not really a big deal. — Carl (CBM · talk) 18:17, 16 September 2007 (UTC)
- Yes, I did understand that the implication followed by logic alone, but I wasn't clear if that was relevant, since it also follows from set theory. Carl's point also seems relevant. --Michael C. Price 18:39, 16 September 2007 (UTC)
- It's a bad idea to use the = sign to mean anything but literal identity, which is what I suspected Michael might have been doing.
- I still don't understand what Michael wants to accomplish by stating the result in a (formally) weaker form; I don't see how that addresses his concerns at all. --Trovatore 18:52, 16 September 2007 (UTC)
- Well, if you read the = symbol as "has the same cardinality" rather than intensional equality,... But it's not really a big deal. — Carl (CBM · talk) 18:17, 16 September 2007 (UTC)
- Wait a minute, there's a subtlety here. You agree with the implication, but do you understand that it follows by logic alone, with no need for any set theory? What you said earlier was A = B seems to induce a bijection between their powersets, which is true, but uses set theory. --Trovatore 18:03, 16 September 2007 (UTC)
- I agree that implies . But my point is statements obvious to you (or even me) are not obvious to the general reader. Perhaps a few examples (such as Arthur's) culled from the talk page would help the article.--Michael C. Price 08:00, 16 September 2007 (UTC)
- I don't know if I follow. You can get from to by logic alone (it's one of the properties of identity; "law of substitution" or something like that). You don't need any set theory at all. I guess to refute the proposition above you do need to know that a cardinal is not less than itself. --Trovatore 07:49, 16 September 2007 (UTC)
- Thanks for correction. What about the article? If we accept all statements not excluded by Easton's & Konig's theorems are compatible with ZFC then the current article implies that is possible for some A & B. --Michael C. Price 07:34, 16 September 2007 (UTC)
(deindent) Well, my concern is that mathematically illiterate idiots like myself will look at and conclude that for some A and B for ZFC without GCH, since the latter implication is consistent with the earlier. --Michael C. Price 19:04, 16 September 2007 (UTC)
- To MichaelCPrice: It is enough that we are trying to provide information that is useful and true. To ask us to be responsible for dealing with the infinite variety of misconceptions which people may have is asking us to do the impossible. JRSpriggs 01:16, 17 September 2007 (UTC)
- This is underscored by the number of times I have seen talk page comments where someone says "Why does the article claim every foo is a bar?" when the article says something like "note that not every foo is a bar." — Carl (CBM · talk) 01:48, 17 September 2007 (UTC)
- Okay, but that is not the case here, where the article lacks any such caveat. Weakening an implication can make it more informative. Regarding JRSpriggs's "useful and true" comment, I am saying that I don't believe that the stronger implication is as useful as the weaker one. (Both implications are true, of course.) I have explained why a couple of time; no one has responded to the actual point of my criticism -- I assume because it is accepted as true.
- If we are concerned about Trovatore's point about weakening the implication then I suggest replacing:
- by the pair of implications:
- and
- .
- Would that make everybody happy? Now there is no loss of information; instead the pair of implications is actually more informative. --Michael C. Price 09:27, 17 September 2007 (UTC)
- This is underscored by the number of times I have seen talk page comments where someone says "Why does the article claim every foo is a bar?" when the article says something like "note that not every foo is a bar." — Carl (CBM · talk) 01:48, 17 September 2007 (UTC)
Aleph4 says: Comparing the two versions
I definitely prefer version #2, for several reasons (which are admittedly not really disjoint/orthogonal):
- The conclusion has the same form as the hypothesis, which is not only aesthetically more appealing, but also more practical. You can easily stack such inference, and get, for example right away.
- is a simple statement: "there is an injection". On the other hand, is a more complicated compound statement: "there is an injection one way, but not the other way".
(English language, as well as the symbols that we use, seems to indicate that "less than" is the basic concept, and "less than or equal" is the derived one. But in set theory the opposite is true. - The second version is (slightly) stronger, at least apparently. (Of course they are really equivalent over a very weak base theory.)
--Aleph4 16:45, 17 September 2007 (UTC)
- Hmmmm, well we can also get pretty damn quickly.--Michael C. Price 19:01, 17 September 2007 (UTC)
Cohen's Proof
I tried to make the discussion accessible to anybody, and to follow Cohen as closely as possible. Unfortunately, I am not the worlds biggest expert on this stuff, and I am still confused on some points. I forgot the details of Shelah's really simple proof that CH is consistent using forcing, and I am still a bit confused about when ccc prevents cardinal collapse. I will try to come back to this, but any informal discussion, I think, is good, because this stuff is usually presented with a lot of logic jargon. Plus, since Cohen passed away, I think his point of view should be preserved. Maybe I didn't do it justice. I don't know. Likebox 02:58, 27 September 2007 (UTC)
- There's some good stuff there, but there's some material that I don't think makes an awful lot of sense. The business about geometry at is the most obvious offender -- it does not appear to me that any of the stated results have anything to do with whether there's a wellordering of the reals such that every proper initial segment is countable. They seem to have more to do with coding the reals into the language of set theory, but that doesn't depend on CH. And the thing about also seems completely irrelevant; you can consider the 28th iterated powerset of the naturals without needing to know its cardinality as an aleph, and it's not clear why any of the referenced "wonders" would depend on its cardinality as an aleph.
- I'm tempted to revert the whole thing for now and suggest that it be discussed more carefully on the talk page; generally I prefer that discussion take place prior to such wholesale revisons of such an important article. I may yet do that; I'm taking it under advisement. --Trovatore 03:58, 27 September 2007 (UTC)
- Point well taken, I was "being bold", as they advise. As far as the geometry business is concerned, it is designed to convey the intuition that set theory is bigger than geometry if you accept CH. Because then all of geometry is done with piddling little aleph 1, while super-geometries could be constructed which are as strong as aleph whatever. If you revert, I'll just bring up the points on the talk page- no harm done. Thank you for your consideration. Likebox 05:43, 27 September 2007 (UTC)
- OK, so my point here is that "set theory is bigger than geometry" even if CH fails. In fact I don't see that CH has much to do with it -- why would the point be different if were, say, or ? You still have bigger sets around, and by an arbitrary amount. Still, I do think there's a lot worth saving from your additions. I'll try to go over it carefully when I have time. --Trovatore 06:39, 27 September 2007 (UTC)
- Hi. I will try to explain better, because I don't think I am saying something controvertial. Every aleph of new cardinality, in completely modern intuition, is a set which is itself a model for all the sets of previous cardinality and so proves the consistency of set theory restricted to those earlier sets. This is a godel step, and allows you to prove new theorems about the integers. The number of "godel" steps is the aleph size, more or less. So where the continuum lies tells you how many godel steps you get by using the continuum. If the continuum is at aleph 1, you get exactly one godel step past countable set theory. That's not very much. If the continuum is at then you get or so godel steps by going to geometry. The point is that when the continuum can embed bigger cardinals, it can prove more theorems about the integers.
- Cohen's method shows that whatever logical model you have for sets, you can embed the whole universe inside the continuum, because the continuum can "forcing-wise" embed an arbitrarily large set. So the continuum is behaving more like a proper class than a set. It is so enormous that it can prove any godelization of anything. Another way of saying this is that in a universe with random or generic points, geometry is more powerful than any set theoretic construction. It is more powerful than any axiom system. It is as strong as the strongest large cardinal. I think this point of view, which is expressed by Cohen in his book, should be represented.
- The fact that you can intuitively get "larger" sets by going to the powerset of the continuum is a total red herring. Say you are working in a model where the continuum is aleph 2, and the powerset of c is aleph-epsilon. You then get aleph-epsilon strong theorems when you pass to the powerset of the continuum. Big deal. You could have just switched to a forcing model where the continuum was already aleph-epsilon strong and done your theorem there. As far as theorems about integers are concerned, if you don't believe there is any restriction on the size of the continuum, it doesn't pay to go past the continuum. So set theory is not necessarily stronger than geometry. Likebox 18:14, 27 September 2007 (UTC)
- Frankly I think you have misunderstood some of this a bit. I won't have time to address it in detail during the working day. But just very quickly, what you seem to be talking about is not so much the alephs as the levels of the von Neumann hierarchy. The reals appear at level of that hierarchy, quite irrespectively of whether CH is true. --Trovatore 19:48, 27 September 2007 (UTC)
- Hi again. I don't mean to rush you or put pressure, I was just trying to be as clear as possible, becuase I don't know for sure if I am fairly representing Cohen's views. I read about this Von Neumann hierarchy, its not what I'm talking about. I am talking about the ordinal number of the continuum, exactly the question of the continuum hypothesis. The question "what is the power of geometry?" means "what theorems about integers can set theory prove?" The answer depends on how big an ordinal geometry can fit in. If geometry is a small cardinal, then geometry is useless for proving theorems that require large cardinals. If geometry can be an arbitrarily big cardinal, then geometry is more powerful than any set theory. The question hinges on whether you admit "random" points as part of geometry or not. If you admit "random" points, then geometry can embed the structure of an arbitrarily large cardinal by forcing it in. If you don't admit random points, and allow only reals that are constructed by iterated set theoretic constructions you just get L, and then you can't prove large cardinal theorems with geometry, because there is no injection of large cardinals into the plane.132.236.54.79 21:18, 27 September 2007 (UTC)
- Finally you've said something precise enough to be wrong :-). ZFC+CH proves exactly the same first-order theorems about the integers that ZFC proves, or that ZFC+¬CH proves, or that ZFC+ proves. I'll give more detail later, if you like. --Trovatore 21:22, 27 September 2007 (UTC)
- I did not say that ZFC + CH proves less or more theorems. I did not imply it, and I never believed it. I agree that it is obvious that ZFC+CH proves the same theorems by equiconsistency. What I did say was that those same theorems will be proved by using different sets. They would use the same ordinals and cardinals, but the cardinals would correspond to different levels of powerset. What would be proven in one system using powerset(powerset(powerset(Z))) would be proven in a different system using only powerset(Z). Since powerset(Z) is geometry, if you can fit high enough ordinals into geometry you don't need powerset more than once.
- If you want me to be formal about it, consider ZFC-P, ZFC without powerset. This has a model which is all countable sets. The theorem "Consis ZFC-P" is a provable statement about the integers in ZFC, since ZFC has an uncountable set, but unprovable in ZFC-P.
- But you don't need the full powerset axiom to prove consis ZFC-P. You can prove that with the much weaker axiom "There exists an uncountable set". This axiom, axiom A1, is a large cardinal axiom for ZFC-Power. It asserts the existence of a mysterious large cardinal aleph-1 which is inaccessible by countable operations. Once you have axiom A1, you can prove "consis ZFC-P" by considering everything smaller than aleph-1 as a model. But now consider the following new axiom: "There exists a set which cannot be bijected with aleph-1", this is a second "large" cardinal axiom, axiom A2. ZFC-P+A1+A2 proves the theorem "consis ZFC-P+A1", a theorem in arithmetic which can't be proven in ZFC-P+A1.
- Now let me add countable powerset CP, "There exists a powerset for every countable set". I can ask the question, what can I prove in this system? I can prove "Consis ZFC-P", but can I prove consis "ZFC-P+A1"? This exactly depends on whether the continuum hypothesis is true or not. If the continuum hypothesis is true in this universe, then certainly not. If the continuum hypothesis is false in this universe, then yes. In this case, the continuum hypothesis can clearly be assumed true, and the answer to this question is "ZFC+CP" does not prove "consis ZFC-P+A1", but it does prove "consis-ZFC-P". I can also add axiom CPP "There is a powerset both for every countable set and for every powerset of a countable set", then ZFC+CCP will prove "consis-ZFC+P+A1". So I need two iterations of power set to prove this theorem. If I add axiom CPPP "there is power for countable, powers of countable, and powers of powers of countable", then I can prove "consis-ZFC+P+A1+A2", so you need three iterations of powerset to prove that theorem.
- But suppose you take ZFC+CPP which proves the existence of aleph-2, and force aleph-2 into the continuum. Now "ZFC+CPP+Forcing" proves the existence of aleph-3, and proves "consis-ZFC+P+A1+A2" which required CPPP before. So with forcing, you only need to use two iterations of powerset to prove something that you needed three iterations before. That's what I was trying to say. I hope this is no longer vague.
- The whole point of forcing is that you only need one iteration of powerset to prove all the theorems, because you could force the powerset of Z as high as you like. The real numbers are arbitrarily powerful, so geometry can be bigger than set theory. —Preceding unsigned comment added by Likebox (talk • contribs) 00:39, 28 September 2007 (UTC)
- Finally you've said something precise enough to be wrong :-). ZFC+CH proves exactly the same first-order theorems about the integers that ZFC proves, or that ZFC+¬CH proves, or that ZFC+ proves. I'll give more detail later, if you like. --Trovatore 21:22, 27 September 2007 (UTC)
- Hi again. I don't mean to rush you or put pressure, I was just trying to be as clear as possible, becuase I don't know for sure if I am fairly representing Cohen's views. I read about this Von Neumann hierarchy, its not what I'm talking about. I am talking about the ordinal number of the continuum, exactly the question of the continuum hypothesis. The question "what is the power of geometry?" means "what theorems about integers can set theory prove?" The answer depends on how big an ordinal geometry can fit in. If geometry is a small cardinal, then geometry is useless for proving theorems that require large cardinals. If geometry can be an arbitrarily big cardinal, then geometry is more powerful than any set theory. The question hinges on whether you admit "random" points as part of geometry or not. If you admit "random" points, then geometry can embed the structure of an arbitrarily large cardinal by forcing it in. If you don't admit random points, and allow only reals that are constructed by iterated set theoretic constructions you just get L, and then you can't prove large cardinal theorems with geometry, because there is no injection of large cardinals into the plane.132.236.54.79 21:18, 27 September 2007 (UTC)
- Frankly I think you have misunderstood some of this a bit. I won't have time to address it in detail during the working day. But just very quickly, what you seem to be talking about is not so much the alephs as the levels of the von Neumann hierarchy. The reals appear at level of that hierarchy, quite irrespectively of whether CH is true. --Trovatore 19:48, 27 September 2007 (UTC)
- OK, so my point here is that "set theory is bigger than geometry" even if CH fails. In fact I don't see that CH has much to do with it -- why would the point be different if were, say, or ? You still have bigger sets around, and by an arbitrary amount. Still, I do think there's a lot worth saving from your additions. I'll try to go over it carefully when I have time. --Trovatore 06:39, 27 September 2007 (UTC)
- Point well taken, I was "being bold", as they advise. As far as the geometry business is concerned, it is designed to convey the intuition that set theory is bigger than geometry if you accept CH. Because then all of geometry is done with piddling little aleph 1, while super-geometries could be constructed which are as strong as aleph whatever. If you revert, I'll just bring up the points on the talk page- no harm done. Thank you for your consideration. Likebox 05:43, 27 September 2007 (UTC)
Would not some of the new material (e.g. on "forcing") be suitable for a new article?--Michael C. Price 06:22, 27 September 2007 (UTC)
- There's a long standing article on forcing (mathematics), though admittedly it assumes considerable background. A lot of the rest of the new material also duplicates other articles. Some of it might be used to make those articles more accessible. --Trovatore 06:39, 27 September 2007 (UTC)
- Hi, I thought about that, and I wanted to write it on forcing, but I thought that here is more appropriate for these reasons:
- 1. Because this is only as much forcing as is needed to make the undecidability of the continuum hypothesis obvious.
- 2. Because I think Cohen's view the the continuum hypothesis is "obviously false" is an intuition that needs to be preserved and explained, and I don't think a discussion of posets clearly explains it. I think that a discussion of axiomatic embeddings of sets into the real numbers does explain it. In particular, it seems to me that Cohen thought of the real numbers as bigger than any set you can think of. So big, that it is useless to compare them with such piddling little trifles as ordinal numbers, no matter what their degree is.
- 3. It is painful for me to cross reference mathematics pages which are written with heavy use of jargon, because I know that such pages are very difficult for students to read, and for no good reason.132.236.54.79 21:18, 27 September 2007 (UTC)
- Regarding point 3, I strongly encourage Likebox (and others) to improve the other articles, especially the forcing article, no matter how painful the process (and it is painful, I know!). For Trovatore to say that the forcing article "assumes considerable background" is a tacit admission that he agrees with Likebox "that such pages are very difficult for students to read". And it sounds like we all have the goal of making "those articles more accessible". I do not possess the background to add much new material, but am willing to try to continue to improve existing material.--Michael C. Price 21:12, 28 September 2007 (UTC)
- Hi, I thought about that, and I wanted to write it on forcing, but I thought that here is more appropriate for these reasons:
Feferman
I've been looking at Solomon Feferman's papers at http://math.stanford.edu/~feferman/papers.html and trying to resist quoting them all over the place, since they're very interesting and I don't know of another such concentrated collection of work on these topics. Anyway he discusses CH in (among other places) Does mathematics need new axioms? (symposium proceedings from 2000 based on an earlier article) starting at page 4:
- But the striking thing, despite all such progress, is that--contrary to Gödel's hopes--the Continuum Hypothesis is still completely undecided, in the sense that it is independent of all remotely plausible axioms of infinity, including all "large" large cardinal axioms which have been considered so far.7 In fact, it is consistent with all those axioms--if they are consistent--that the cardinal number of the continuum is anything it "ought" to be, i.e. anything which is not excluded by König's Theorem. ...
My own view--as is widely known--is that the Continuum Hypothesis is what I have called an "inherently vague" statement, and that the continuum itself, or equivalently the power set of the natural numbers, is not a definite mathematical object. Rather, it's a conception we have of the totality of "arbitrary" subsets of the set of natural numbers, a conception that is clear enough for us to ascribe many evident properties to that supposed object (such as the impredicative comprehension axiom scheme) but which cannot be sharpened in any way to determine or fix that object itself. On my view, it follows that the conception of the whole of the cumulative hierarchy, i.e. the transfinitely cumulatively iterated power set operation, is even more so inherently vague, and that one cannot in general speak of what is a fact of the matter under that conception. For example, I deny that it is a fact of the matter whether all projective sets are Lebesgue measurable or have the Baire property, and so on.
What then--on this view--explains the common feeling that set theory is such a coherent and robust subject, that our ordinary set-theoretical intuitions are a reliable guide through it (as in any well accepted part of mathematics), and that thousands of interesting and prima facie important results about sets which we have no reason to doubt have already been established? Well, I think that only shows that in set theory as throughout mathematics, a little bit goes a long way--in other words, that only the crudest features of our conception of the cumulative hierarchy are needed to build a coherent and elaborate body of results. Moreover, one can expect to make steady progress in expanding this body of results, but even so there will always lie beyond this a permanently grey area in which such problems as that of the continuum fall.
I believe some of this should be used in the article but I'm not sure exactly how. Could some editors familiar with what the larger mathematical community thinks of Feferman's work figure out how to place it? 75.62.4.229 (talk) 01:25, 24 November 2007 (UTC)
- Judging from your quotation, this statement of his is vague. His assertions are not accepted as true of ZFC by the mathematical community. Indeed, he seems to be suggesting that ZFC be replaced with some other set of axioms which he does not specify. Also, we know from Gödel's incompleteness theorems that no effective and consistent set of axioms can be complete. So the problem he is complaining about is insoluble. JRSpriggs (talk) 02:39, 24 November 2007 (UTC)
- I don't think he's saying CH is ill-posed as a problem in the formal system ZFC. Rather, he takes an anti-Platonistic stance towards ZFC itself: i.e., ZFC (unlike PA) is just a formal system and its theorems aren't really meaningful as mathematics outside of the pure study of set theory, and CH is neither true nor false, it's just more formal symbols. He has another article claiming that just about all scientifically applicable mathematics (including most of 20th century functional analysis) can be done in PA or maybe some slight extensions of PA. Anyway his article is pretty readable and maybe my description isn't doing it justice, so it would be great if you could look at it. 75.62.4.229 (talk) 04:28, 24 November 2007 (UTC)
- I can't comment on Feferman's work in general, but based on the way that people in my field are using set theory I wouldn't agree with this passage, at least not without some reservation. I am working in classification theory, a part of model theory founded by Saharon Shelah. This is at the intersection of logic and algebra. We study objects like "the theory of all algebraically closed fields of characteristic 0" and assign invariants to them. Most of these invariants are maps Card → Card. Often the number of classes in such a classification is finite, and is smaller under the GCH than under certain strong negations of it. At least one theorem that has nothing to do with set theory was first proved by Shelah assuming a strong negation of GCH. Since this negation was known to be consistent with ZFC, and since the statement was "absolute", this was sufficient to show that the theorem holds just under ZFC.
- Most people in this field try to avoid such arguments, but my impression is that nowadays that's a matter of taste rather than philosophy. I should note, however, that many experts consider these set-theoretic invariants a guide to the corresponding elementary notions rather than the real thing. It reminds me of the continued use of Betti numbers for some time after homology theory had made them obsolete. --Hans Adler (talk) 10:51, 24 November 2007 (UTC)
- I don't think he's saying CH is ill-posed as a problem in the formal system ZFC. Rather, he takes an anti-Platonistic stance towards ZFC itself: i.e., ZFC (unlike PA) is just a formal system and its theorems aren't really meaningful as mathematics outside of the pure study of set theory, and CH is neither true nor false, it's just more formal symbols. He has another article claiming that just about all scientifically applicable mathematics (including most of 20th century functional analysis) can be done in PA or maybe some slight extensions of PA. Anyway his article is pretty readable and maybe my description isn't doing it justice, so it would be great if you could look at it. 75.62.4.229 (talk) 04:28, 24 November 2007 (UTC)
I read the PDF of his paper to which you linked. It is all very metamathematical. I only got one fact from it which I think is usable here. I summarized it in my edit which said "So far, CH appears to be independent of all known Large cardinal axioms in the context of ZFC.". JRSpriggs (talk) 03:54, 25 November 2007 (UTC)
- Right, he's a logician whose interest area is arithmetization of metamathematics. I've requested his book "By the light of logic" from my local library so I'll see if I can find some clearer statements about CH in it. His view that CH is a vague problem is clearly a minority viewpoint among mathematicians; what I don't know is whether it's considered far-fringe. Certainly he's a respectable old-time logician (student of Tarski, professor at Stanford, editor in chief of Gödel's collected works, etc.) and as such, if we're trying to describe different viewpoints on CH, I think we should mention his, especially if we can find a concise formulation. Interestingly, I think he quotes Gödel somewhere as also saying that CH could not be settled by LCA. Are any of the logic editors here reading this familiar with his work? I'm a little surprised since I figured he'd be well-known. 75.62.4.229 (talk) 05:27, 25 November 2007 (UTC)
- I was aware of him before this. He has written about ordinal numbers which is a special interest of mine. However, the mere fact that he and his work are notable generally is not sufficient to justify including whatever he says into this article. You must justify its relevance here. JRSpriggs (talk) 07:02, 25 November 2007 (UTC)
- There's a section of the article listing several viewpoints on CH ("Arguments for and against CH"), and I'm proposing including his viewpoint (which is certainly a minority one) as a sentence or two in that section. So my main question is whether set theorists or logicians have given much attention to his view ("attention" does not necessarily mean "agreement"). If they have, that shows relevance. My secondary quesiton would be how to summarize his argument. 75.62.4.229 (talk) 09:45, 25 November 2007 (UTC)
- I was aware of him before this. He has written about ordinal numbers which is a special interest of mine. However, the mere fact that he and his work are notable generally is not sufficient to justify including whatever he says into this article. You must justify its relevance here. JRSpriggs (talk) 07:02, 25 November 2007 (UTC)
- I am no longer hooked into the community of set theorists well enough to know "whether set theorists or logicians have given much attention to his view". I suggest that you try to summarize his view insofar as it is relevant to that section. If anyone disagrees with your interpretation or its relevance, he is free to change it. JRSpriggs (talk) 00:09, 26 November 2007 (UTC)
- Let me suggest this: Feferman is by no means the only logician who thinks CH is not a statement with a well-defined truth value. That may even be the majority opinion. Nor did I see anything in his remarks on CH in the linked paper that I think is particularly unique to him. What is notable about Feferman is that, of the highly-respected commentators, he is one of the most skeptical on strong ontological claims of set theory (or at least, of those highly-respected commentators, is one of the ones most noted for his skepticism, which I suppose is a bit different). But while that distinction might possibly make him a good person to quote as a representative of this view, it shouldn't really be presented as somehow uniquely his; there are a lot of people that think that. (Of course, they're all wrong, but that's not important right now :-).
- There are possibly several different skeptical positions that could be mentioned. Right now the article mentions mainly the ZFC-formalist one, which I think is a fairly superficial viewpoint; Feferman's view is at least more substantial than that one. Another one that could possibly be mentioned is the so-called "many worlds" or "plenitudinous Platonist" viewpoint that refuses to discriminate among models of ZFC and figures that, since some satisfy it and some don't, then those must be equally valid possibilities. That's superficially appealing but when you really look into it you see that it's actually the silliest of all the options -- if you're a realist about models then you're actually very close to being forced to admit that some models are better than others and that in fact it's not hard to specify what kind of model has to be correct about CH's truth value. Nevertheless it is the position of some otherwise sensible folks, so it may deserve a mention (would be nice to find a criticism of it too, because it's so eminently criticisable). --Trovatore (talk) 01:41, 26 November 2007 (UTC)
- Thanks, I think you've pegged the situation pretty well--I'll defer to you if you want to add something like the above to the article. I've requested a copy of John Dawson's biography of Gödel from my library (along with Feferman's book) and it's likely to have some good material from the realist perspective. I'll probably get both books next week and may try adding something once I've looked at them. 75.62.4.229 (talk) 07:29, 26 November 2007 (UTC)
- I am no longer hooked into the community of set theorists well enough to know "whether set theorists or logicians have given much attention to his view". I suggest that you try to summarize his view insofar as it is relevant to that section. If anyone disagrees with your interpretation or its relevance, he is free to change it. JRSpriggs (talk) 00:09, 26 November 2007 (UTC)
As the first Hilbert problem...
The first problem consisted of two parts as originally presented in the actual talk by Hilbert. The second part, which was emphasized just as much CH, was to prove Cantors belief that every set can be well ordered. That second part has been answered (not proved, but axiomatized) in the disguise of The Axiom of Choice. YohanN7 (talk) 16:38, 27 November 2007 (UTC)
- I just read the translation here again, and although Hilbert does mention the problem of well-ordering the real numbers, the standard understanding is that "Hilbert's first problem" is the continuum hypothesis. See the refs by Foreman and Martin in this article, for example. — Carl (CBM · talk) 17:03, 27 November 2007 (UTC)
- I know, that is the standard understanding of Hilberts first problem - and I don´t want to try to alter that. I just wanted to point out that the original formulation did involve two, very deep indeed, questions, both of (CH and to a much lesser extent AC) which are still controversial. YohanN7 (talk) 18:29, 27 November 2007 (UTC)
who believes CH or ~CH ?
I don't entirely agree with the following passage:
Generally speaking, mathematicians who favor a "rich" and "large" universe of sets are against CH, while those favoring a "neat" and "controllable" universe favor CH.
See the Maddy reference I added, page 500, the sections entitled Not-CH is restrictive (in favor) and Modern forcing (in favor).
I'll try to come up with some wording that's not too awkward, illustrating the historical view reported in the existing Wiki article, while also pointing out that between models having all the same reals, it's the ones with more sets of reals that are more likely to satisfy CH. --trovatore
My attempt is now in place Trovatore 05:04, 27 Jun 2005 (UTC)
User Martindowd has been arguing that the truth of CH, indeed V=L, should be taken more seriously. He suggests adding the following at the end of the second paragraph of the "Arguments for and against CH" section of the Continuum hypothesis page. If you have any opinion on this, please let me know.
Recently, arguments have appeared that this view should be re-evaluated, and that there are arguments in favor of both (Dowd 2011).
Dowd, Martin (2011) "Some New Axioms for Set Theory", http://www.ijpam.eu/contents/2011-66-2/1/1.pdf Martindowd (talk) 15:04, 21 September 2011 (UTC)
- This is a related topic; but the paper in question takes a new approach.Martindowd (talk) 17:52, 24 September 2011 (UTC)
Did Cantor believe CH?
I would add to Trovatore's point that it is questionable (as stated on the page) that Cantor himself believed CH. Did he not alternate back and forth during his manic (and depressive) phases, sometimes believing CH, sometimes believing ~CH? See the BBC TV documentary "Dangerous Knowledge" willbown. 16 June 2008. —Preceding comment was added at 22:37, 16 June 2008 (UTC)
- I'd never heard that he ever believed ¬CH, only that he sometimes despaired of ever being able to prove CH. Interesting if true, though. What did the documentary say exactly? Has anyone seen this claim in any source available online or at the library? --Trovatore (talk) 22:53, 16 June 2008 (UTC)
- I've got the programme on tape, and I'll look it up and report back. Great programme, BTW. --Michael C. Price 18:08, 24 August 2008 (UTC)
- The programme hints that Cantor wanted to believe in CH -- but it is not explicit. As for Cantor's alternating between CH and ¬CH, that was in reference to him thinking that he found a proof of CH at times and ¬CH at other times. Proof and belief are not quite the same.--Michael C. Price 08:25, 25 August 2008 (UTC)
- In 1978 Cantor wrote in "Ein Beitrag zur Mannigfaltigkeitslehre" (A contribution to the theory of manifolds)
- Durch ein Inductionsverfahren, auf dessen Darstellung wir hier nicht näher eingehen, wird der Satz nahe gebracht, daß die Anzahl der nach diesem Eintheilungsprinzip sich ergebenden Klassen eine endliche, und zwar, daß sie gleich zwei ist Eine genaue Untersuchung dieser Frage verschieben wir auf eine spätere Gelegenheit.
- Free translation: An induction process/method, which we will not present here in detail, suggests the theorem that the number of classes which result from the classification principle is finite, and in fact 2. We will resume this investigation at a later moment.
- I think this makes it clear that he thought he could work out a proof of CH. --Aleph4 (talk) 19:42, 9 May 2011 (UTC)
- Little-known fact: When he wrote the above, he was blasting Stayin' Alive from his boombox. Could have interfered with his concentration. --Trovatore (talk) 20:24, 9 May 2011 (UTC)
- Indeed, Stayin' Alive, top of the charts in 1978. I meant 1878 of course. --Aleph4 (talk) 15:17, 30 July 2011 (UTC)
- Little-known fact: When he wrote the above, he was blasting Stayin' Alive from his boombox. Could have interfered with his concentration. --Trovatore (talk) 20:24, 9 May 2011 (UTC)
- In 1978 Cantor wrote in "Ein Beitrag zur Mannigfaltigkeitslehre" (A contribution to the theory of manifolds)
Investigating the continuum hypothesis
I've removed this section:
- If a set S were found that disproved the continuum hypothesis, it would be impossible to make a one-to-one correspondence between S and the set of integers, because there would always be elements of set S that were "left over". Similarly, it would be impossible to make a one-to-one correspondence between S and the set of real numbers, because there would always be real numbers that were "left over".
It's a good thing to add some intuition, but I don't know that this passage helped much. CH isn't about whether such a set S can be found in any ordinary sense, but just about whether one exists. --Trovatore 21:12, 22 October 2005 (UTC)
Let me add this thought:
Since CH cannot be disproven, a set that denies it cannot be found. This doesn't mean it does not exist, but we're close :-) Honnza (talk) 06:01, 17 May 2008 (UTC)
- CH cannot be disproved from ZFC. No, I'm afraid that's not particularly close to settling the issue. --Trovatore (talk) 08:40, 17 May 2008 (UTC)
Any set to demonstrate CH?
The undecidability of CH begs the question: If there is a cardinality between and , then what sets might there be that have this cardinality?
In other words, is there any known set that is larger than , but such that you need to set the truth value of CH to determine whether or not it's equivalent to continuum?
Moreover, is there any evidence pointing to the existence or non-existence of such a set, or whether it would be possible to find it if it does exist? -- Smjg (talk) 16:35, 28 February 2008 (UTC)
- Well, you have to keep in mind here the distinction between a set and a definition of a set. Think of sets as collections of things just lumped together at random, not necessarily in accordance with any rule. Then it might happen, just by accident, that there's some rule such that everything in the set satisfies the rule, and everything outside the set does not -- in that case we say that the set is "definable", but you still can't identify the set with its definition; that way lies all sorts of trouble (ask Frege).
- So rephrasing your question -- is there a definition for a set of reals such that ZFC neither proves nor disproves that the set of all reals satisfying the definition, has cardinality (but does prove that the set is uncountable)? Sure, but possibly not a terriby interesting definition. Something like "the first ordinal-definable reals in the natural wellorder on OD, or all the reals if there are not OD reals". --Trovatore (talk) 18:07, 28 February 2008 (UTC)
- Also, is the set of all subsets of the natural numbers (sometimes identified with the reals) which are constructed (see Constructible universe) before the first uncountable stage. It has cardinality , I believe. JRSpriggs (talk) 08:34, 29 February 2008 (UTC)
- No, not unless (which it doesn't, of course). --Trovatore (talk) 18:42, 29 February 2008 (UTC)
- To Trovatore: Thanks for the correction. JRSpriggs (talk) 12:03, 1 March 2008 (UTC)
- No, not unless (which it doesn't, of course). --Trovatore (talk) 18:42, 29 February 2008 (UTC)
- Also, is the set of all subsets of the natural numbers (sometimes identified with the reals) which are constructed (see Constructible universe) before the first uncountable stage. It has cardinality , I believe. JRSpriggs (talk) 08:34, 29 February 2008 (UTC)
- The easiest example of a set that has cardinality is the set of all countable ordinals (where everything is relativized to a fixed model of ZFC). Each countable ordinal can be viewed as a linear order on the natural numbers and thus an element of . So if you use AC to choose for each countable ordinal a single real encoding that ordinal, you will obtain a set that has cardinality , but will not have the cardinality of the continuum unless CH holds. — Carl (CBM · talk) 15:03, 1 March 2008 (UTC)
- Quoting Carl (an inch above) "Each countable ordinal can be viewed as a linear order on the natural numbers..." Is the converse statement "Each linear order on the natural numbers can be viewed as a countable ordinal" necesarilly true? If yes, is there then a one-to-one correspondence between linear orders on the natural numbers and countable ordinals? Or is that last statement perhaps equivalent to the CH? (When thinking of the Cantor-Bernstein theorem, it might be that way. (I'm just speculating now of course.)) The number of orderings of a finite number n is n!. Can one by a naive extension of the factorial function say that CH can be "rephrased" as the statement ! = ? YohanN7 (talk) 17:40, 18 May 2008 (UTC)
- Taking the last question first: Yes, that's a reasonable way of putting it, though not quite by the reasoning you used; the reasoning has some flaws but it's close enough to see that the factorial of (not a term that's used much but it's pretty clear what it means) is .
- Getting more into the details, more specifically, not every linear order of the natural numbers corresponds to a countable ordinal, but only the wellorderings. To a wellordering of the naturals you associate a unique countable ordinal, namely the length of the wellordering. And going the other direction, any (infinite) countable ordinal can be represented as the length of some wellordering--but not a unique one; there will be lots of different wellorderings with the same length. So what this gets us is that there are at least as many wellorderings of the naturals as there are countable ordinals (strictly speaking, infinite countable ordinals, but the finite ones are easily accounted for). It doesn't tell us there aren't more. --Trovatore (talk) 18:20, 18 May 2008 (UTC)
- Interesting! To quote yourself Trovatore, "It's a good thing to add some intuition...", but you are always very (too?;) careful to make intuitive arguments close to precise mathematical statements. I believe that the above reply does shed additional light on what the CH actually is and goes beyond intuition. (It actually sounds like a statement of ZF(C) in my ears, making it mathematics.) I also think that som revised form of it may qualify for the main article as an example of what CH and its negation would imply. Most people who knows what a one-to-one correspondence will know what a wellordering is.YohanN7 (talk) 22:34, 20 May 2008 (UTC)
- Quoting Carl (an inch above) "Each countable ordinal can be viewed as a linear order on the natural numbers..." Is the converse statement "Each linear order on the natural numbers can be viewed as a countable ordinal" necesarilly true? If yes, is there then a one-to-one correspondence between linear orders on the natural numbers and countable ordinals? Or is that last statement perhaps equivalent to the CH? (When thinking of the Cantor-Bernstein theorem, it might be that way. (I'm just speculating now of course.)) The number of orderings of a finite number n is n!. Can one by a naive extension of the factorial function say that CH can be "rephrased" as the statement ! = ? YohanN7 (talk) 17:40, 18 May 2008 (UTC)
Independence of CH from large cardinal axioms
- So far, CH appears to be independent of all known large cardinal axioms in the context of ZFC.
But in the context of ZF, j:V into V refutes choice (according to the article on Reinhardt cardinals anyway), and GCH implies it (according to this article). So then j:V into V would refute GCH. Right? --Unzerlegbarkeit (talk) 15:58, 27 May 2008 (UTC)
- It may be that J:V into V refutes ZF.Kope (talk) 16:29, 27 May 2008 (UTC)
- Well, sure. It may be that any large cardinal axiom refutes ZF. But so far no such refutation is known. Nor is any proof, refutation, or independence of CH or GCH from any large cardinal axiom known, other than this one. Is that correct? --Unzerlegbarkeit (talk) 02:36, 28 May 2008 (UTC)
- The Generalized Continuum Hypothesis is much stronger than the Continuum Hypothesis. So many propositions may be consistent with CH, but not with GCH. Reinhardt's cardinal cannot exist in ZFC so the sentence in question does not apply to it. JRSpriggs (talk) 06:37, 28 May 2008 (UTC)
- Sure. And I did say "in the context of ZF" and "GCH". I guess my implicit assertion is that whatever makes the sentence in question worth mentioning makes this worth mentioning too, assuming I've stated the situation correctly. --Unzerlegbarkeit (talk) 10:24, 28 May 2008 (UTC)
- (To Unzerlegbarkeit ) Not quite. A favorable solution would be to show that the consistency of some (axiom of choice) large cardinal implies the consistency of j:V into V, minus AC. Incidentally, GCH has more than one formulations, which are equivalent in the presence of AC, but not necessarily so in the absence of it. One of them implies AC. Therefore, I think, it is more correct to say that one form of GCH implies AC. Kope (talk) 06:45, 28 May 2008 (UTC)
- To Kope: See Talk:Axiom of choice#GCH implies AC?? for a proof that GCH implies AC. This establishes that there is only one version of GCH, even in ZF (without choice being assumed otherwise). JRSpriggs (talk) 06:59, 28 May 2008 (UTC)
- But CH doesn't, so might it have inequivalent formulations in the absence of AC? Is this also worth mentioning? --Unzerlegbarkeit (talk) 10:24, 28 May 2008 (UTC)
- Yep. The following are not equivalent in the absence of AC:
- , ,
- There is no cardinal m such that
- The first two are considered somewhat standard formulations of CH; I only included the latter two so that it's clear they are all the same under the axiom of choice. — Arthur Rubin (talk) 17:22, 28 May 2008 (UTC)
- Hmmm. In ZFU (ZF with Urelements), AH (aka Aleph Hypothesis) does not imply GCH (if X is an infinite set, there is no Y such that (with "<" in the sense of cardinality)). (Source: my mother's book Set Theory for the Mathematician, I believe). I'm sure that fact that PW (the power set of a well-ordered set can be well-ordered, a trivial consequence of AH) does not imply AC in ZFU, although it does in ZF, is in both editions of my parents' book Equivalents of the Axiom of Choice. — Arthur Rubin (talk) 17:40, 28 May 2008 (UTC)
- Yep. The following are not equivalent in the absence of AC:
- But CH doesn't, so might it have inequivalent formulations in the absence of AC? Is this also worth mentioning? --Unzerlegbarkeit (talk) 10:24, 28 May 2008 (UTC)
- However, see Beth number#Generalization — if the ur-elements form a set which is equinumerous with a pure set (a set whose transitive closure contains no ur-elements), then I believe that ZFU+AH would imply AC and thus GCH. JRSpriggs (talk) 14:08, 29 May 2008 (UTC)
- Yes, I believe that's correct. The proof escapes me at the moment.... — Arthur Rubin (talk) 14:34, 29 May 2008 (UTC)
- Consider the class of pure sets. It satifies ZF+AH. Since bijections between pure sets are themselves pure sets, it has the same aleph numbers as the original model (which included urelements). So the class of pure sets satifies AC. Thus the pure set which is equinumerous with the set of urelements can be well ordered. Thus the set of urelements can be well ordered. Then do induction on the rank α to show that Vα can be well ordered. So the universe satisfies AC. So it satisfies GCH. OK? JRSpriggs (talk) 15:31, 29 May 2008 (UTC)
- Yes, I believe that's correct. The proof escapes me at the moment.... — Arthur Rubin (talk) 14:34, 29 May 2008 (UTC)
Forms of CH without AC
The form makes the continuum hypothesis meaningful even if the continuum isn't well-ordered. The article states:
- The continuum hypothesis is closely related to many statements in analysis, point set topology and measure theory. As a result of its independence, many substantial conjectures in those fields have subsequently been shown to be independent as well.
Do we have any examples which would make sense without AC, and would they depend on the form of CH? Also, on the other side of the coin, my understanding is that there could be no purely arithmetic consequences, roughly because ZF + V=L proves CH anyway (and even GCH), and relativising everything to L makes no difference to (first-order) arithmetic. If correct, I believe this is worth stating. Also, the article states:
- Assuming the axiom of choice, there is a smallest cardinal number greater than , and the continuum hypothesis is in turn equivalent to the equality
The "assuming the axiom of choice" bit should really attach to the "in turn equivalent to", because even from the axioms ZF without AC, aleph_1 exists and is an immediate successor of aleph_0, right? --Unzerlegbarkeit (talk) 02:39, 1 June 2008 (UTC)
- Without AC, there could be other cardinals which are larger than but incomparable with , for example, the cardinality of a set which is the union of natural numbers with a Dedekind finite infinite set. In this case, neither the new cardinal nor can be said to be the smallest cardinal greater than . JRSpriggs (talk) 06:38, 1 June 2008 (UTC)
Original Sources
I notice there aren't any references to Cantor's original writings. I'll try to dig some up, but has anyone seen any English translated letters, etc? Libertyblues (talk) 00:03, 3 August 2008 (UTC)
Hilbert's first has nothing to do with ZFC per se
This statement is revealing a transfinite-platonic bias. without a formalization like ZFC, it is not clear that it is possible to give a meaning to the statement that the continuum even has an ordinal size. Before Cantor insisted it was true, an infinite collection like the set of real numbers was not considered to have a definite size, let alone a definite ordinal size, and indeed, after Cohen, it is again a widespread point of view that the continuum does not have a definite size as an ordinal.
The idea that the set of all real numbers has definite properties in a platonic realm can be classified as a type of "transfinite platonism", which is just what platonism usually means nowadays. But transfinite Platonism can be logically separated from "computational platonism" (I made that up, but it needs a name)--- the position that all computer programs either halt or do not halt. The second position is what people mean by platonism in practice--- that the results of computations with symbols have a meaning, and questions about their outcome have a truth value. it was the position of Paul Cohen, shared by most mathematicians, that all questions about the integers/computer-programs are decided by a strong enough axiom system, which is a way of saying that they have a truth value in an axiom-system independent way.
But you can believe this, and still be a formalist regarding transfinite set theory. The position might be called "formalist", but "formalist" conflates two notions: "formalist regarding uncountable ordinals and sets the size of the continuum" and "formalist regarding countable infinity". A "formalist regarding countable infinity" would, for example, consider a nonstandard models of Peano arithmetic to be just as "true" a model of the integers as the standard model. Such a formalist would believe that some statements about diophantine equations like Fermat's Last Theorem, are undecidable in an absolute sense. This is the type of straw-man formalist that people argue against.
A "formalist regarding uncountable ordinals" on the other hand, would say that the truth value of the 3N+1 conjecture is well defined, but statements like the continuum hypothesis have no truth value except relative to an axiom system. This is the type of formalism which the forcing models foist upon you. If you accept this philosophy, which many people do, then you would not regard the continuum hypothesis as independent of ZFC.
This is the philosophical position which Cohen alludes to in his book, hopefully stated clearly enough there so that this exposition will be recognized as a clarification. I have been trying to figure out how to say it clearly for a while.Likebox (talk) 17:22, 24 August 2008 (UTC)
- Hilbert wanted a proof of the continuum hypothesis (he doesn't seem to have explicitly countenanced a refutation). A proof from what axioms, I'm afraid he didn't really say. But whatever they were, they certainly weren't the axioms of ZFC, because his speech was in 1900, and ZFC wasn't formulated until a couple of decades later.
- As for the situation today, it is certainly true that there are folks who are realists about the naturals but formalists beyond that, and that they mostly will not consider CH to have a well-defined truth value outside of its provability or refutability in some formal theory. There is still, however, no clear reason that that formal theory ought to be ZFC. --Trovatore (talk) 01:06, 25 August 2008 (UTC)
- I see your point, thanks for clarifying. But ZFC is not arbitrary--- it's sort of natural--- you have the function axiom, and everything else just builds up big ordinals in sequence. It's like Peano arithmetic, anything else is going to be roughly similar. Hilbert had formalized logic in mind, and probably knew approximately what a formalized set theory would look like, and I think he meant ZFC. But I defer to someone who actually read more Hilbert.Likebox (talk) 02:51, 25 August 2008 (UTC)
- In one sense, you're right, ZFC is not arbitrary — all its axioms are well-motivated (in retrospect) by the picture of the cumulative hierarchy. What's arbitrary is cutting off precisely at the strength of ZFC, no less and no more.
- Now, the most natural and well-accepted enhancements to ZFC, the large cardinal axioms, don't settle CH either, or at least the ones we know so far don't settle it. It doesn't really follow that we won't ever find ones that do (though they would have to be of a somewhat different character from the currently known ones).
- On the other hand, there are extensions to ZFC that someone or other has considered natural at some point that do settle CH. For example the axiom of constructibility settles it positively, whereas the proper forcing axiom settles it negatively. The big difference is, I'm afraid, a Platonistic one: there's not as compelling a reason to believe that either of these is true (and indeed there are extremely good reasons to believe that the axiom of constructibility is false).
- The most interesting current line of inquiry into the question is one started by Woodin, who has a subtle and difficult argument that, if accepted, would imply that CH is false. --Trovatore (talk) 03:49, 25 August 2008 (UTC)
- You like repeating the party line! But of course, you know that I think it's rubbishy. And Woodin's approach is neither subtle or difficult. It's just determinacy.Likebox (talk) 06:30, 25 August 2008 (UTC)
- If you truly understand Woodin's approach, I'd be happy if you'd teach it to me; I know only some vague generalities about it. But it's certainly not "just determinacy". In fact I don't see that it has that much to do with determinacy, directly. What he claims is that he has something analogous to determinacy, one level up; that just as projective determinacy "settles all natural questions" (whatever that means exactly—note that the quotes are not intended to attribute the phrase to Woodin) about , his approach similarly "should" settle all natural questions about (one of which is CH).Now, just by the way, "just" determinacy can get extremely difficult and subtle. But Ω-logic is still quite another thing. --Trovatore (talk) 06:44, 25 August 2008 (UTC)
- I thought he was just repeating determinacy, I guess I'm totally wrong. I didn't read his paper very closely at all.Likebox (talk) 10:31, 25 August 2008 (UTC)
- I know (from a very superficial look at) 'The Higher Infinite' that there were some (at the time of their discovery) unexpected connections between large cardinal axioms and various versions of the axiom of determinacy, for what that's worth. Zero sharp (talk) 14:49, 25 August 2008 (UTC)
- I thought he was just repeating determinacy, I guess I'm totally wrong. I didn't read his paper very closely at all.Likebox (talk) 10:31, 25 August 2008 (UTC)
- If you truly understand Woodin's approach, I'd be happy if you'd teach it to me; I know only some vague generalities about it. But it's certainly not "just determinacy". In fact I don't see that it has that much to do with determinacy, directly. What he claims is that he has something analogous to determinacy, one level up; that just as projective determinacy "settles all natural questions" (whatever that means exactly—note that the quotes are not intended to attribute the phrase to Woodin) about , his approach similarly "should" settle all natural questions about (one of which is CH).Now, just by the way, "just" determinacy can get extremely difficult and subtle. But Ω-logic is still quite another thing. --Trovatore (talk) 06:44, 25 August 2008 (UTC)
- You like repeating the party line! But of course, you know that I think it's rubbishy. And Woodin's approach is neither subtle or difficult. It's just determinacy.Likebox (talk) 06:30, 25 August 2008 (UTC)
(deindent) I am pretty ignorant about determinacy--- I only have only the most superficial heresay knowledge, and no clear understanding. But I have a somewhat negative opinion anyway, probably unjustified.
- Well, then just a friendly suggestion: refrain from making categorical statements that Woodin's approach is 'just determinacy' and from accusing people of 'just repeating the party line'. It just makes you look ignorant. —Preceding unsigned comment added by 67.118.103.210 (talk) 23:32, 26 August 2008 (UTC)
- I am ignorant. So is everybody else. That's life.Likebox (talk) 01:53, 27 August 2008 (UTC)
When I think about the continuum hypothesis, it is linked in my mind to the notion of measure and probability--- the reason that many people have intuitions about the cardinality of the real numbers is that it is consistent to talk about randomly choosing real numbers in a way that is different from randomly choosing integers or elements of a well ordered set. You can't pick an integer uniformly at random--- the concept doesn't make sense. You need a probability distribution, and certain integers are more likely than others. The same goes for any countable ordinal--- you need to weight different positions with different probability.
But for the interval , the notion of picking a number at random seems to be perfectly well defined, because you can roll dice to find each digit in sucession. This converges to a real number, and any property of that number that has probability zero is false. If a random number can be thought of as an element of the mathematical universe, with the property of belonging or not belonging to any previously specified set, it means that this previously specified set has a well defined Lebesgue measure. So not only is the continuum hypothesis false with random reals, it is meaningless, because the real numbers can't be well ordered. Any ordinal, no matter how large, can be imbedded in the reals by inductively mapping each successive element into at random, and the probability of picking the same real twice is always zero (the last statement is only self consistently true, it's true in a countable model).
Making this precise is the job of forcing, which, given the political situation in mathematics, phrases everything in terms of the picking process, although at the end it talks about "random reals". But a random real number is an obviously consistent idea, even though it is incompatible with choice.
So when I look at post-forcing axioms like determinacy, I am always looking for the probability interpretation, and in this case I couldn't see it. The determinacy axiom, as I heard it, was exciting because it had a completely different character--- it asserted something about infinite sets that somebody thought was intuitively consistent (I don't know why, but they turned out to be right, so they must have had a good idea). But the justification for this for those with a formal view of higher infinity is that a large cardinal axiom proved that it is equiconsistent with set theory. So determinacy, as far as theorems about integers are concerned, is a moderate large cardinal axiom, and is not as interesting as a completely new axiom (although Cohen's "article of faith" says there are not going to be any consistent new axioms that are not equiconsistent by virtue of a large enough cardinal). So a superficial glance at Woodin's article was disappointing for me, because it didn't give a perspective which was probabalistic. But that's a very self-centered point of view, so I'll give it another shot.Likebox (talk) 17:51, 26 August 2008 (UTC)
Need references
Edited out a minor error: ZFC stands for "Zermelo-Frankel with the axiom of choice", whereas ZF is simply "Zermelo-frankel". Would be nice to see some superscript references in this article, I'm afraid I don't know how to do that yet. 83.71.3.220 (talk) 00:41, 1 October 2008 (UTC)
- See Misplaced Pages:Citing sources#Footnote summary for instructions on how to put in references. JRSpriggs (talk) 01:39, 1 October 2008 (UTC)
Natural numbers?
Cantor introduced the concept of cardinality to compare the sizes of infinite sets, and he gave two proofs that the cardinality of the set of integers is strictly smaller than that of the set of real numbers. His proofs, however, give no indication of the extent to which the cardinality of the natural numbers is less than that of the real numbers.
Shouldn't natural numbers be rational numbers? Since the natural numbers is a subset of the integers, it's quite obvious that the cardinality of the natural numbers isn't greater than the integers. —Preceding unsigned comment added by 131.215.42.208 (talk) 23:21, 20 January 2009 (UTC)
- The passage seems to be written for readers who know without having to think about it that the cardinality of the naturals is the same as that of the integers (or, possibly, who use the word integer to mean natural number, a convention used informally by some set theorists). Since not all readers will fall into this category, we should probably change both occurrences to be the same. The question is, should we say integers, or naturals? Integers sounds better (the repetition of natural numbers could be a bit stilted) but natural numbers is more likely to be strictly historically accurate when talking about what Cantor strictly speaking proved. --Trovatore (talk) 23:48, 20 January 2009 (UTC)
What could be 2^aleph_0 without the CH?
I think the article should include a section saying which alephs could be (and ) in the case CH is undecided. The article about the cardinality of the continuum has some indications about this (for example, it could be that , but not ), but I think this article here is the proper place to a full analysis. And I have never seen an upper limit to ; does it make sense if could be some monstrosity like ? Albmont (talk) 19:11, 3 April 2009 (UTC)
- Well, for a realist there is only one thing the continuum could be, which is precisely whatever it is.
- But if you're asking what values are consistent with ZFC, that's precisely known: It can be any regular cardinal, or any singular cardinal with uncountable cofinality. So yes, the value is consistent with ZFC.
- Of course one has to be a little careful how one states this. For example is a regular cardinal, and yet it is obviously not consistent with ZFC that . I won't try to resolve this for you in this post; I'll leave you to puzzle over it a little while. --Trovatore (talk) 19:22, 3 April 2009 (UTC)
- Since the article also talks about the denial of CH, I think it's proper to include in it the things that could be :-) Or, if we want to be precise, the article should list, within ZFC, which are the alphas for which we can prove that
- For example, I think that it's impossible to prove that for any α < ω1 and n > 0. But what about ? ? (BTW: maybe the article about cofinality should include a relation of the cf class-function to the +, . and ^ class-operations in the ordinal class).
- I take it that can't (obviously) be its own successor, but can we prove that or even ? Albmont (talk) 20:21, 3 April 2009 (UTC)
- I don't know that you've quite come to terms with the issue I was alluding to here. The problem with questions like "for what can we prove that the continuum is not ?" is that you're mixing object language and metalanguage. Questions about provability are in the metalanguage, whereas "for what ?" is in object language.
- An example problem (not by any means the only problem): Some ordinals (even some ordinals less than ω1 are not definable in the language of set theory. So in that case what does it mean to prove that the continuum is not ? By the most direct reading, you can't even get started, because you can't even state the claim that you're trying to prove. (And nevertheless, some of these ordinals are excluded, because they have cofinality ω, so we can't dismiss the issue either — it seems to mean something, but it's not obvious just what.)
- There are reasonable formulations that take care of the problem, but as I say, you have to be careful. I think you need to think about it some more before anything I say about it will make much sense. --Trovatore (talk) 23:49, 3 April 2009 (UTC)
- I think proper formalism is that, given a model of ZFC, and an ordinal which is either a successor ordinal or has cofinality greater than , then there is a model with the same ordinals and same cofinalities such that . (I'm not sure that's accurate, but it's close.) However, it is not consistent that and has countable cofinality. — Arthur Rubin (talk) 00:47, 4 April 2009 (UTC)
- As for or even , it doesn't make sense, as subscripts of ℵ are ordinals, and is a cardinal. If you use it to mean the initial ordinal corresponding to that cardinal, the first is consistent, but the second is not, by Cantor's theorem. The proof of the first is left as an exercise for the reader. — Arthur Rubin (talk) 00:52, 4 April 2009 (UTC)
- Well, I know the answer, Arthur. I was trying to get Albamont to think through the definition-versus-denotation issue here. Until you do that, no answer to this question really makes sense.
- Your formulation is indeed "close", but it has some problems. For example there isn't any (real) model, having the real ordinals, in which the continuum is larger than it is in V, because there aren't any more real numbers to add. There is a model in the sense of a forcing extension, but that's a different thing. --Trovatore (talk) 03:38, 4 April 2009 (UTC)
- The reals that were added are pretty clearly new reals that just happen to not be in the smaller model... The difficulty is in the existence of generic filters over V. If you want, you can insist there are none. However, I've been told that the use of countable transitive models is out of vogue and forcing over V is "the way things are done" these days. — Carl (CBM · talk) 03:17, 6 April 2009 (UTC)
- Forcing over V is indeed "the way things are done these days" — but that doesn't mean that any generic filters over V (for a nontrivial forcing notion) actually exist. You don't get any coherent ontology from the idea that they exist. Or at least I haven't been able to work out any way that you can, and I have tried. It seems that that path forces you to change your story — you have to say, look, first I took all the reals that there are (which you have to do, if you take the von Neumann hierarchy seriously), but now, lookee here, I found some more.
- The right way to resolve this is, do whatever you have to do to find the right theorems (just as the Newton—Leibniz approach is still the best way of thinking of calculus), but realize that what you're actually talking about, when you force over V, is names for objects that don't really exist. When you ask, for example, whether one of these "new reals" is between 0.3 and 0.4, sometimes you're going to get the answer "maybe". No genuine real has that property. --Trovatore (talk) 22:41, 6 April 2009 (UTC)
- Will respond on your talk page, since this is getting off topic. — Carl (CBM · talk) 00:56, 7 April 2009 (UTC)
- The reals that were added are pretty clearly new reals that just happen to not be in the smaller model... The difficulty is in the existence of generic filters over V. If you want, you can insist there are none. However, I've been told that the use of countable transitive models is out of vogue and forcing over V is "the way things are done" these days. — Carl (CBM · talk) 03:17, 6 April 2009 (UTC)
You might want to look at Easton's theorem which deals with a more general question. JRSpriggs (talk) 06:37, 4 April 2009 (UTC)
- That page seems to have the same problem I was talking to Arthur about — doesn't distinguish between honest-to-God models that live in V, and models for which you have to go to forcing extensions or Boolean valued models. It's true that it would be awkward to insert correct language for the point. --Trovatore (talk) 09:35, 4 April 2009 (UTC)
My question is quite simple: given ZFC, can we name a few values of α such that ? There's no need to expand the metalanguage to discuss models, etc - let's get to the basic, simple theory and see what we can get. For example, the first value that we can show is , the second is , etc. Of course, given that it is impossible to prove within ZFC that is and others, the next question would be quite obvious, but let's not do that leap. Not yet. Albmont (talk) 03:13, 5 April 2009 (UTC)
- I'm afraid your "simple question" simply doesn't make sense without some stipulations regarding the object language/metalanguage question. Now, it's not that a simple answer can't be given in some sense. The simple answer, below ω1 which I think you mentioned at some point, is that only the successor ordinals can be the α you're looking for.
- But the problem is that that answer, though correct in some sense, is flat wrong unless you explain what you mean by it. Here's an example of why. Define α as follows:
- α = 2 if CH holds
- α = 1 otherwise
- Now α is a successor ordinal below ℵ1, and yet it is inconsistent with ZFC that .
- So it's just incorrect to say that you can answer your question correctly without addressing this issue. --Trovatore (talk) 05:50, 5 April 2009 (UTC)
- To Trovatore: Perhaps I am having trouble understanding your point, but the definition you gave for α is not a proper definition in my way of thinking. It is reminiscent of Grue and bleen. JRSpriggs (talk) 21:10, 5 April 2009 (UTC)
- Why is it not a proper definition? It can be translated into a formula in the language of set theory, with one free variable, such that provably in ZFC, there is a unique object satisfying that formula, and that object has the properties I have ascribed to it. If that's not a proper definition, then you owe me some sort of demarcation between definitions that are proper and those that aren't. --Trovatore (talk) 02:00, 6 April 2009 (UTC)
- Because of the failure of absoluteness here, one has to distinguish between the ordinal named by φ in the base model and the ordinal named by φ in the extension. For example, let φ be the formula above; if α is named by φ in the base model, there really will be another model in which ℵ(α) really is the cardinality of the continuum; however this will not be the ordinal defined by φ in the new model. Rather, one must look at the image of α under the embedding that is constructed when the new model is constructed. I don't know if this is worth pointing out somewhere; I believe it is usually taken for granted in the literature. — Carl (CBM · talk) 03:17, 6 April 2009 (UTC)
- Why is it not a proper definition? It can be translated into a formula in the language of set theory, with one free variable, such that provably in ZFC, there is a unique object satisfying that formula, and that object has the properties I have ascribed to it. If that's not a proper definition, then you owe me some sort of demarcation between definitions that are proper and those that aren't. --Trovatore (talk) 02:00, 6 April 2009 (UTC)
- To Trovatore: Perhaps I am having trouble understanding your point, but the definition you gave for α is not a proper definition in my way of thinking. It is reminiscent of Grue and bleen. JRSpriggs (talk) 21:10, 5 April 2009 (UTC)
Albmont: the informal "short answer" is that any uncountable κ with uncountable cofinality is a possible candidate for the cardinality of the continuum. But this statement is not entirely precise because "possible" here means "can be achieved by a forcing extension" (because the informal statement is really just a much easier special case of Easton's theorem), and there are some technical issues related to forcing that have to be mastered in order to fully understand what's going on. These issues are what Trovatore is alluding to. — Carl (CBM · talk) 04:03, 6 April 2009 (UTC)
- Thanks, Carl. Yes, absoluteness is the key. Since we are trying to talk about ordinals and cardinals in multiple models of set theory, we must use definitions which are independent of the choice of the model, i.e. absolute. So φ must be chosen to be Δ1 which I believe that Trovatore's definition of α is not. JRSpriggs (talk) 06:18, 6 April 2009 (UTC)
- Certainly the α I defined is not absolute, and yes, that's one key. But the point is more general than that. Carl's "short answer", by itself, is simply underspecified.
- People have to come to terms with the difference between an object and a definition of an object, or they will be led astray by this sort of discussion. It's something that most people never really come across — every natural number, for example, has kind of a canonical definition, and the distinction between object language and metalanguage doesn't really come up until you start talking about the Goedel theorems or something. But for ordinals there's just no way around it; you have to come to terms with the problem.
- This is the same problem with discussions such as whether anyone can "find" a counterexample to CH, in the sense of a set of reals of intermediate cardinality. --Trovatore (talk) 09:23, 6 April 2009 (UTC)
- Thanks, Carl. Yes, absoluteness is the key. Since we are trying to talk about ordinals and cardinals in multiple models of set theory, we must use definitions which are independent of the choice of the model, i.e. absolute. So φ must be chosen to be Δ1 which I believe that Trovatore's definition of α is not. JRSpriggs (talk) 06:18, 6 April 2009 (UTC)
I don't believe the "object language"/"metalanguage" distinction is really the problem here. In these sorts of situations we work model theoretically: start with a model W and work with a language that has a constant for every element of W. So every ordinal in W is definable in this language. One thing that does matter is to distinguish between things that look like names but are actually meant to be formulas, and things that look like names that are actually meant to be names. This is typically achieved by writing dots over the things that are meant to be names; we ought to write .
So a slightly better way of stating the theorem at hand goes like this.
- Let W be a model of set theory and assume that certain generic sets over W exist. Then for any cardinal α in W which (in W) is uncountable with uncountable cofinality, there is a forcing extension which preserves cardinalities in which .
I don't see that it matters whether any formula φ defining α is absolute or not, because we will not actually use φ to identify a cardinal in the forcing extension, we use the forcing name. The absoluteness issue is only relevant to seeing why Trovatore's example does not give a contradiction to Easton's theorem. Easton's theorem should have a dot above the G(α), that's all. But I can see why it is usually not included. — Carl (CBM · talk) 12:13, 6 April 2009 (UTC)
- The reason it's necessary to make the object language — metalanguage distinction here is that the actual question was not model-theoretic, but rather proof-theoretic. And the proof-theoretic question looks like it ought to make sense, but it actually doesn't. I think we need to make clear, when giving the "in some sense correct" answer, that it is not actually an answer to the (fundamentally ill-formed) proof-theoretic question.
- Of course it does answer certain instances of the proof-theoretic question, after reformulation to make them well-formed, but the person who wants to understand this really needs to go learn forcing. Once he or she learns forcing he can figure out these instances and reformulations for himself. --Trovatore (talk) 17:44, 8 April 2009 (UTC)
- I think we read the initial question differently. — Carl (CBM · talk) 20:00, 8 April 2009 (UTC)
- Does the original question make sense if it is reformulated this way: Are there any ordinals for which it has been shown that ? If yes, could the article list at least one of them? Or is it just wrong to state without supplyning a PHD theseis?YohanN7 (talk) 21:43, 10 April 2009 (UTC)
- It makes less sense that way; you are running into the issue Trovatore was concerned about. I think that the answer you are looking for is the following fact. There is no model of ZFC in which the equation holds. — Carl (CBM · talk) 21:47, 10 April 2009 (UTC)
- Ok, I'll read this discussion more carefully and try to understand. B t w, I meant in my question within ZFC (and the negation CH of course).YohanN7 (talk) 21:57, 10 April 2009 (UTC)
- To give a simplistic answer — must obey So it cannot be: finite, ... ... etc. That is, most singular cardinals are not allowed, but would be OK because its cofinality is
- On the other hand most regular cardinals would be OK (could be ), specifically: OK? JRSpriggs (talk) 12:08, 11 April 2009 (UTC)
- So, here came my next question (that apparently has a negative answer). It it possible to give an explicit ordinal α for which it can be shown that ? Albmont (talk) 12:00, 16 April 2009 (UTC)
- BTW, if I got it right, PCF theory provides an upper bound for . Albmont (talk) 12:15, 16 April 2009 (UTC)
- Certainly it is possible to give an explict ordinal α and prove . Just let . I think you misread the bit about PCF theory, though. --Trovatore (talk) 17:40, 16 April 2009 (UTC)
- This would depend, of course, on whether one accepts that actually refers to a specific ordinal. But I agree that Albmont's question here mixes metalanguage and object language, and that the only way to really understand what is going on is going to be to learn more about forcing in more detail. — Carl (CBM · talk) 23:16, 16 April 2009 (UTC)
- Independently of whether you think that it represents a specific ordinal (as opposed to what? a nonspecific ordinal?), it is undeniably the case that ZFC proves the formula . The problem, besides the object–meta thing, or possibly as a rephrasing of it, is that the word "explicit" is doing unexamined work here. --Trovatore (talk) 23:28, 16 April 2009 (UTC)
- Yes, of course ZFC proves that formula. The problem with mixing "explicit" and "proves" is that the former is best handled in a language with a constant for every ordinal, while the latter is usually handled in the language without those constants. — Carl (CBM · talk) 00:06, 17 April 2009 (UTC)
- Independently of whether you think that it represents a specific ordinal (as opposed to what? a nonspecific ordinal?), it is undeniably the case that ZFC proves the formula . The problem, besides the object–meta thing, or possibly as a rephrasing of it, is that the word "explicit" is doing unexamined work here. --Trovatore (talk) 23:28, 16 April 2009 (UTC)
- This would depend, of course, on whether one accepts that actually refers to a specific ordinal. But I agree that Albmont's question here mixes metalanguage and object language, and that the only way to really understand what is going on is going to be to learn more about forcing in more detail. — Carl (CBM · talk) 23:16, 16 April 2009 (UTC)
- Albmont, on the PCF thing: My guess is that you looked at the result that said that , granted that is a strong limit cardinal, and reasoned that since , it follows that . That would be fine, except that it ignores the "granted that..." part.
- Once you know (or assume) that is a strong limit, you actually don't need PCF theory to prove that . If it's not obvious, think about it for a minute. When you see it you'll go ohh. --Trovatore (talk) 09:17, 17 April 2009 (UTC)
- Yes, I saw that inequality, but I also saw the "granted that..." part - which hindered me to write (a note on style: is it ok to write , where x is a cardinal?). Does the PCF thing give any upper limit without any extra axioms beyond ZFC? Unfortunately, I think it will take more than a minute to think about it :-) Albmont (talk) 17:14, 17 April 2009 (UTC)
- pcf theory will give you no bounds on the continuum. pcf theory is about powers of singular cardinals. It is certainly possible that the continuum is . can be anything it ought to be. (Robert Solovay, 1965) --Aleph4 (talk) 18:23, 17 April 2009 (UTC)
- Certainly it is possible to give an explict ordinal α and prove . Just let . I think you misread the bit about PCF theory, though. --Trovatore (talk) 17:40, 16 April 2009 (UTC)
- To Albmont: I am not familiar with PCF theory, but the article on it says "It gives strong upper bounds on the cardinalities of power sets of singular cardinals.". I would just point out that is regular, not singular. Thus it appears that the theory does not apply to it. Anyway, Easton's theorem implies that there is no upper bound on JRSpriggs (talk) 20:01, 17 April 2009 (UTC)
- Well, is necessarily the smallest cardinality of a powerset of an infinite set, so any bound on the powerset of a singular cardinal must ipso facto bound the continuum.
- Spoiling my own riddle above, PCF theory does indeed imply that, if is a strong limit, then the continuum is less than . But this is trivial — by the definition of "strong limit", since , it's immediate, under the given assumption, that . --Trovatore (talk) 07:44, 18 April 2009 (UTC)
CH in a non-AC context
Yuck. This is the kind of issue I'd ordinarily prefer to just ignore. But the issue has been raised at axiom of determinacy and seems likely to recur.
The question is, which definition of CH should we give as primary, the one I call weak CH, which says every uncountable set of reals is equinumerous with the reals, or strong CH, which says the reals are equinumerous with the countable ordinals (that is, )?
It's true that most sources seem to state it in a weak form (I'm counting there is no cardinality strictly between and as an instance of the weak form; it's equivalent modulo the violent pathology of an infinite Dedekind-finite set of reals). Jech is a notable exception; he explicitly equates the continuum hypothesis with .
However, in the default set-theoretic context, the axiom of choice holds, so there is no need to make the distinction. Therefore I think it is unjustified to assume that this choice of statement reflects a preference as to the essential meaning of CH in a non-AC context. I would actually argue that strong CH is more natural to think of as capturing that meaning from the standpoint of contemporary set theory; I've given a couple of reasons at talk:axiom of determinacy.
The problem at the AD article is that an editor wanted to add the claim that AD implies CH, which I think is severely contrary to the usage of the terminology in the set-theoretic community. I've worked with set theorists who study AD, and I never recall any of them putting it that way. The problem for this article is that it puts the weak CH statement first, and then asserts that, given AC, this is equivalent to strong CH; this I think is misleading. Better would be to state them both, note that they're equivalent, but then note that in the absence of AC, they're not. --Trovatore (talk) 19:59, 24 April 2009 (UTC)
- A few comments:
- "weak CH" is sometimes used for . But let's keep your terminology for the moment.
- I think that in the non-AC context, "weak CH" is more interesting, because strong CH rarely (in the sociological sense) holds.
- The "most sources" that you mention include Cantor and Hilbert (in his first problem).
- There is a theorem of Sierpinski that GCH implies CH. This theorem is about weak GCH; the implication from strong GCH is less interesting, since it factors through the property "every power set of an ordinal can be well-ordered", which is not about cardinal arithmetic at all.
- Therefore I would prefer weak CH as the "primary" definition of CH. (Despite Jech. We also don't follow Kunen in phrasing AC as "every set can be well-ordered".) As far as the AD article is concerned, I think the current version (with the inline explanation of precisely which form of CH it implies) is quite clear.
- --Aleph4 (talk) 16:12, 8 May 2009 (UTC)
- Although 4 is an interesting point, I still don't agree:
- on point 2: whichever might be "more interesting", weak CH is in my experience rarely called the continuum hypothesis in that context (though Moschovakis admittedly does, which surprised me).
- On point 3: Cantor was working in a non-formalized context which however clearly would be described modernly as "assuming AC", so I don't see that as really all that relevant
- Strong CH is the one of the simpler logical form ( as against , and the one with stronger absoluteness properties across models. --Trovatore (talk) 07:24, 9 May 2009 (UTC)
- Although 4 is an interesting point, I still don't agree:
- I realize it's been nearly 15 years, but since the article doesn't give a citation for the equivalence, I'm showing here that if there is "an infinite Dedekind-finite set of reals" then there is a counterexample which is strictly larger than .
- Let be a set of reals with Dedekind cardinality, and let S be {0,1,2,3,...}. One has |S| and |S|, so since is incomparable with , one gets < |S|. S is a set of reals, so |S|. Towards a contradiction, assume |S| = .
- Let f be a bijection from S to the reals. Choose a base and how digits would be replaced for Cantor's diagonal argument, and then for all natural numbers n, let be the real number produced by applying Cantor's diagonal argument to the sequence , and let be . For all natural numbers n:
- By Cantor's diagonal argument, {f(0),f(1),f(2),f(3),...}, so {0,1,2,3,...}. Since S is {0,1,2,3,...}, this means . is also not in , so .
- Thus is an infinite sequence of distinct elements of , contradicting that has Dedekind cardinality. This contradiction shows that |S| , so < |S| < .
Kurt Godel's Proof
The section "As the first Hilbert problem" and "Impossibility of proof and disproof (in ZFC)" don't agree on Kurt Godel's work using the AC:
- Later work by Kurt Gödel in 1939 showed that the continuum hypothesis could not be disproved based on the current axioms of set theory (ZF).
vs
- Kurt Gödel showed in 1940 that the continuum hypothesis (CH for short) cannot be disproved from the standard Zermelo-Fraenkel set theory (ZF), even if the axiom of choice is adopted (ZFC).
The former only mentions that Godel did his work in ZF, but the latter section says that his original work was under the ZFC. Given the results, I think it was under ZFC. I think the former section needs to be made more explicit. --B-Con (talk) 08:11, 15 May 2009 (UTC)
- Gödel showed that ~CH cannot be proved in ZF and also cannot be proved in ZFC. — Carl (CBM · talk) 11:37, 15 May 2009 (UTC)
- To Carl: I think you mean "disproved" rather than "proved". Do not confuse him with Paul Cohen (mathematician).
- To B-Con: Kurt Gödel showed that within a model of ZF, one can define the constructible universe (L) a proper class which not only satisfies ZF but also GCH and thus both CH and the axiom of choice. Thus, if CH could be disproved from ZF or from ZFC, then one would have reached a contradiction in this submodel and thus a contradiction in ZF itself. JRSpriggs (talk) 10:10, 16 May 2009 (UTC)
- Thanks, I meant the negation of CH of course, and so I added a tilde above. Re B-Con: it's better to look things up, or ask, rather than making guesses. — Carl (CBM · talk) 15:14, 16 May 2009 (UTC)
Cantor's fanatism
I was just reading a book about Cantor. It mentioned that one of the main reasons Cantor believed in the continuum hypothesis was because he managed to show every nonempty perfect set is the same size as the reals, and then showed a closed set C is either countable or has cardinality of the reals by partitioning C into a perfect set and a countable set. And then he said "In future paragraphs it will be proven that this remarkable theorem has a further validity even for linear point sets which are not closed,..." Should this be in the article? Also I personally believe his reasoning is wrong: since the reals have a countable base, the number of open sets is the same as the reals, and thus so is the number of closed sets (because they are complements of open sets). But there are "so many more" subsets, because 2^(aleph0) is negligible compared to 2^(2^(aleph0)). Right???Standard Oil (talk) 14:28, 14 August 2009 (UTC)
- Cantor never thought he had proved CH, iirc. Yes, a quote from him (and a little more info on the origins of the problem--Cantor did a lot of work on it) would be nice. 66.127.52.47 (talk) 11:32, 24 March 2010 (UTC)
Goedel
Could someone clueful please check whether this edit (by me) is any good, and revert it if necessary. I started having doubts after making it. Thanks. 66.127.55.192 (talk) 17:57, 17 February 2010 (UTC)
- Sounds better to me. JRSpriggs (talk) 04:19, 18 February 2010 (UTC)
Dehornoy article
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.6594
an article explaining(?) Woodin's recent work. I don't understand it at all. Maybe someone here can make sense of it and possibly cite it or use something from it. 66.127.55.192 (talk) 06:24, 18 February 2010 (UTC)
Why the name?
Why is this hypothesis called the "continuum" hypothesis? The proposition "There is no set whose cardinality is strictly between that of the integers and that of the real numbers." is asserting the lack of any set of size (or cardinality) between integers and real numbers, which sounds far more like the a "non-continuum hypothesis." or since it is saying that there is not a single set that stands in that range (far less a continuum of size/cardinalities of sets) the theory might even be called the "not-even-close-to-continuum hypothesis" or "discontinuum hypothesis" or "discrete hypothesis." Since continuum is a word in normal English, I guess it would help to know why this theory has the name it has. I can't understand the name, let alone the math :-) --Timtak (talk) 10:09, 14 October 2010 (UTC)
- Answering my own question, looking at the article on Continuum_(set_theory), the latter seems to be saying that the fact that there are no sets between the size (cardinality) of integers and real numbers, proves that the latter forms a continuum? I.e. the continuum hypothesis, is called such, not because it says something about a continuum of sets, but because it posits a continuum of real numbers. So perhaps by way of explanation, one might write, "'There is no set whose cardinality is strictly between that of the integers and that of the real numbers.' implies that real numbers form a continuum, and hence the name of this theory." Is that it? Or indeed, since from the the Continuum_(set_theory) article it says that the cardinality of real numbers is the cardinality of the real line (is that the same as "a or any real line"?) then the continuum hypothesis is called such because it implies reality is continuous?!--Timtak (talk) 10:18, 14 October 2010 (UTC)
It's classical terminology. The real numbers were traditionally called "the continuum" and the continuum hypothesis is a hypothesis about the cardinality of the real numbers. — Carl (CBM · talk) 10:51, 14 October 2010 (UTC)
- Perhaps because it could be worded "Any uncountable subset of the continuum is equinumerous with the continuum.". JRSpriggs (talk) 11:55, 14 October 2010 (UTC)
From my classes we were taught that was called "the continuum", (which of course has the same cardinality as the Reals), but nevertheless Cantor was interested in Fourier series convergence, and all those fellas ever talk about is :P . Handsofftibet (talk) 13:15, 13 January 2011 (UTC)
- Where was your teacher trained? Tkuvho (talk) 13:32, 13 January 2011 (UTC)
Australia and University of Newcastle Upon Tyne - EnglandHandsofftibet (talk) 11:35, 14 February 2011 (UTC)
- Truncating the continuum at 0 and 2\pi seems a bit unusual. I have certainly not seen any trace of such a convention at any of the wiki pages on varieties of continua. Also, historically mathematicians have studied various notions of the continuum but it always tends to be a linear one, see continuum (theory). Tkuvho (talk) 17:31, 14 February 2011 (UTC)
No inverse powerset
70.51.177.249 (talk · contribs) and 70.54.228.146 (talk · contribs) added a reference to "Deciding the Continuum Hypothesis with the Inverse Power Set" by Patrick St-Amant. This paper begins by adding a new axiom to ZFC, namely
This axiom is inconsistent with the existence of the empty set. The existence of the empty set is an unavoidable consequence of the existence of any set and the axiom of separation. The empty set is defined by
The powerset of a set B is defined by
If the new axiom were true, then we could instantiate it for the empty set to give
for some set Y. Then putting Y in for B in the definition of powerset gives
In particular, if C were the emptyset, we would get
By the definition of the emptyset
for any D, and thus
holds vacously. Consequently, we would arrive at
which contradicts the definition of the empty set. Since the new "axiom" led to a contradiction (using only definitions and the existence of the empty set), it must be false. Thus Patrick St-Amant's whole project is an exercise in futility, in fact, an obvious hoax. JRSpriggs (talk) 12:29, 6 January 2011 (UTC)
- It might not be, actually. St-Amant seems to be proposing a kind of a Grothendieck construction to "extend" the universe of sets to a kind of an object of negative rank in the set-theoretic universe. Note that he seems to have a paper published in a refereed journal. The text does not seem funny enough to be merely a hoax. But at any rate it is far from clear that it meets notability guidelines. Tkuvho (talk) 13:48, 6 January 2011 (UTC)
- Hoaxes need not be "funny", i.e. comical. They may be serious attempts to deceive people, perhaps with the intention of putting the victims down in order to make the perpetrator seem superior by comparison.
- If the universe of sets is to be extended, then he needs to make it clear at the outset what rules of ZFC are being relaxed (negated or altered), instead of pretending to preserve them all. In this case, how has he changed the definitions of the empty set, of powerset, or the axiom of separation? Otherwise the argument above will still apply and render his work meaningless. JRSpriggs (talk) 21:05, 6 January 2011 (UTC)
- By the way, I should note that: when a set X is the powerset of a set Y, Y is the union of X. So a one-sided inverse already exists. What we are arguing about here is whether there could be inverse on the other side of the powerset operation. Ironically, St-Amant purports to define his inverse operation in his second axiom, but he uses the wrong side relative to what he said in his first axiom. Thus the second axiom could be construed as referring to the union operation. JRSpriggs (talk) 06:00, 7 January 2011 (UTC)
- I imagine he means the usual axioms to apply to "sets" whose rank is a natural number, or something like that. I you sure he did not say something to that effect somewhere in the 30 page paper? I don't really have the set-theoretic wherewithal to understand the paper, but why are we trying so hard to refute it? An alternative approach would be to encourage this new contributor to add this material once it is published and its notability is established. Tkuvho (talk) 06:03, 7 January 2011 (UTC)
- I am not going to waste my time trying to read and understand a long paper when I find a fundamental error on the second page. The reason I wrote this section of talk to refute it is that at Misplaced Pages talk:WikiProject Mathematics#Hoax warning some people expressed doubts about my claim that this is a hoax. JRSpriggs (talk) 06:10, 7 January 2011 (UTC)
- I would assume that before one claims something is a hoax, one would necessarily have to waste his time at least perusing the paper in question. On the second page you mentioned, the author clearly states that the power axiom is supposed to apply only to a certain class of objects in his theory, whereas the other axioms of ZF are assumed to apply only to "sets which arise from ZF". Tkuvho (talk) 11:45, 7 January 2011 (UTC)
- We're applying the wrong standard for removal. It may not be a hoax, but it's not well-formed (it doesn't describe the complete axiom systems, so that proofs could be verified, nor is there evidence the resulting system would be consistent) and there is no sign of reliable sources referring to it. It should not appear in a Misplaced Pages article, even as an external link, until someone reliable talks about it. — Arthur Rubin (talk) 15:36, 7 January 2011 (UTC)
- That the author is published doesn't make his unpublished papers reliable. He would have to be an expert in the field; a minimum qualification would be that he has published papers in the field. The range of fields of his unpublished papers argued about in Misplaced Pages articles suggests he is not an expert. — Arthur Rubin (talk) 15:42, 7 January 2011 (UTC)
- I would assume that before one claims something is a hoax, one would necessarily have to waste his time at least perusing the paper in question. On the second page you mentioned, the author clearly states that the power axiom is supposed to apply only to a certain class of objects in his theory, whereas the other axioms of ZF are assumed to apply only to "sets which arise from ZF". Tkuvho (talk) 11:45, 7 January 2011 (UTC)
To Tkuvko: If you understand his theory, then tell me — Where am I wrong in my deduction of a contradiction from his theory? Which is the first step that fails and why? JRSpriggs (talk) 11:08, 8 January 2011 (UTC)
- Since the empty set is not the powerset of anything, the "new axiom" fails on first use. -- cheers, Michael C. Price 14:28, 8 January 2011 (UTC)
- Look I am not acquianted with St Amant and have no vested interest in defending his theory, though I am curious about it. Perhaps your argument fails in the second step. Why do you assume that his idealized power set operation is supposed to be surjective onto traditional sets? Tkuvho (talk) 16:48, 8 January 2011 (UTC)
- To Tkuvho: If I understand you, you are saying that my inference from
- to its instance
- might be wrong. That is, St-Amant may not intend that all normal sets (which he calls Zermelo sets) be covered by his axiom 1. However, he does give several examples of normal sets to which he applies P, some of which do not contain the empty set as an element (which is all I really need). Can you quote any sentence in his article which gives a criterion for excluding some normal sets from the domain of P? JRSpriggs (talk) 23:09, 9 January 2011 (UTC)
- To Tkuvho: If I understand you, you are saying that my inference from
- Well I would have hoped one of the 70.etc IP's might have given us an explanation if treated in a more welcoming fashion. Tkuvho (talk) 01:13, 10 January 2011 (UTC)
Large cardinal?
Is it consistent with ZFC to have = some large cardinal?YohanN7 (talk) 07:48, 9 May 2011 (UTC)
- Well, not the "normal" ones, so to speak. But there are variants that still fit neatly into the consistency-strength hierarchy for which the answer could be yes. For example, it's consistent that the continuum is weakly inaccessible (equiconsistent with the existence of an inaccessible) or that it's real-valued measurable (equiconsistent with the existence of a measurable). --Trovatore (talk) 07:53, 9 May 2011 (UTC)
- The two cases you mention are related in a way, right? I vaguely recall reading in "Geometric Measure Theory" by Herbert Federer (a horribly difficult book for me by the way, but good) that the existence of a nontrivially measurable infinite set requires the existence of an inaccesible cardinal. I need to refresh my brief knowledge on that. By the way, the articles here on inaccessible cardinals and related definitions are kind of messy. (I can be more precise regarding that last statement if needed, given some time.)YohanN7 (talk) 09:12, 9 May 2011 (UTC)
- Edit: In the above I meant measurable set with all subsets measurable. YohanN7 (talk) 19:03, 9 May 2011 (UTC)
- Right, I believe that requires a real-valued measurable, but I'd have to check myself on that. Real-valued measurables are certainly all weakly inaccessible, and quite a bit more than that (e.g. weakly Mahlo). I have heard of something called a "real-valued supercompact", so it doesn't necessarily stop at measurable. I wonder if there's some abstract way for taking a large-cardinal property, defined say in terms of extenders, and turning all the measures into real-valued measures, and thereby getting a "real-valued" version. --Trovatore (talk) 19:08, 9 May 2011 (UTC)
- As far as the measures go, signed measures and complex-valued measures can be expressed in terms of real-valued measures (positive semidefinite ones) using the Hahn-Jordan decomposition. But you probably knew that. YohanN7 (talk) 21:04, 9 May 2011 (UTC)
- Ah, just figured out what you were talking about here. That's not really what I meant. The measures given by extenders, when defining large cardinals, are ordinarily two-valued measures — the only possible values are 0 and 1. Going to real-valued measures is a liberalization, not an extra requirement. --Trovatore (talk) 03:07, 10 May 2011 (UTC)
- Hm. I should perhaps have read real-valued measurable before I opened my mouth;). YohanN7 (talk) 09:52, 10 May 2011 (UTC)
- Indeed, we are talking about the same thing, at least we were at the outset. My reference refers to non-measurable cardinals as Ulam Numbers. The only thing that appears to differ is the term of atomless that gives the transition from measurable to real-valued measurable (implicitely there in Federer I believe). Do you mean that you want to take an arbitrary measure and expand it into some sort of sum of real-valued measures? And, in addition, somehow express various large cardinal properties to see exacly how strong large cardinal axiom one needs to actually find a cardinal that at least might be real-valued measurable? In other words, you want to find exactly where in the supposedly linearly ordered consistency-strength hierarcy of large cardinal axioms each of the involved axioms belong? (I'm only guessing here so don't laugh too much!) YohanN7 (talk) 10:28, 10 May 2011 (UTC)
- Ah, just figured out what you were talking about here. That's not really what I meant. The measures given by extenders, when defining large cardinals, are ordinarily two-valued measures — the only possible values are 0 and 1. Going to real-valued measures is a liberalization, not an extra requirement. --Trovatore (talk) 03:07, 10 May 2011 (UTC)
- As far as the measures go, signed measures and complex-valued measures can be expressed in terms of real-valued measures (positive semidefinite ones) using the Hahn-Jordan decomposition. But you probably knew that. YohanN7 (talk) 21:04, 9 May 2011 (UTC)
- Right, I believe that requires a real-valued measurable, but I'd have to check myself on that. Real-valued measurables are certainly all weakly inaccessible, and quite a bit more than that (e.g. weakly Mahlo). I have heard of something called a "real-valued supercompact", so it doesn't necessarily stop at measurable. I wonder if there's some abstract way for taking a large-cardinal property, defined say in terms of extenders, and turning all the measures into real-valued measures, and thereby getting a "real-valued" version. --Trovatore (talk) 19:08, 9 May 2011 (UTC)
- Easton's theorem allows one to make equal to be any uncountable regular cardinal since they all have cofinality greater than However, when you do that the cardinal in question would cease to be a strong limit cardinal and thus would no longer satisfy the definitions of most types of large cardinals. JRSpriggs (talk) 10:03, 9 May 2011 (UTC)
- Yes, that makes sense. But you must mean that the cardinal in question would cease to be a strongly inaccessible cardinal (if that is what we happened to start with)? Might it still be a weakly inaccessible cardinal? YohanN7 (talk) 22:28, 9 May 2011 (UTC)
- If you do it in the most obvious way (just add κ Cohen reals) then I think the forcing preserves cardinalities and cofinalities, so κ should still be both a limit cardinal and a regular cardinal, thus weakly inaccessible. --Trovatore (talk) 01:06, 10 May 2011 (UTC)
- Yes, that makes sense. But you must mean that the cardinal in question would cease to be a strongly inaccessible cardinal (if that is what we happened to start with)? Might it still be a weakly inaccessible cardinal? YohanN7 (talk) 22:28, 9 May 2011 (UTC)
The Axiom of symmetry
One intuitive argument against CH is said to be Freiling's Axiom of Symmetry. I wonder where the intuition comes from. I agree that the Axiom of Symmetry (AX) sounds quite convincing on first reading, but that's a little thin for mathematical reasoning. I thought about a way to base the intuition on provable facts using smaller sets than the reals. What about this?
Modify AX the following way:
1.) We throw darts at a countable set instead of the unit interval (I). Say the natural numbers (N) for definiteness.
2.) The function f:I->{x:x is a countable subset of I} occuring in AX is exchanged for f:N->{x:x is a finite subset of N}
Leave everything else untouched in AX. Call this thing the Axiom of Countable Symmetry (ACX).
I think that ACX "sounds" just about as convincing as AX on "first reading". Lets call a counterexample of AX (or ACX) a Freiling function. ACX is false. Proof: f(n) = {m: m <= n} is a Freiling function.
I don't draw any conclusions from this. But provided I'm correct in the above , I can't see the validity of the claim that AX is an argument against CH. If anything, it might be an argument in favour of CH, but I wouldn't go as far as that. In the article Freiling's axiom of symmetry there are listed two objections against AX. My example above might just be an example of objection number two, but I can't see exactly what that number two says. At any rate one does not need CH to disprove ACX, and I can't see the need for AC either. For a countable set there exists a bijection between it and N. That bijection does provide a wellordering (with the same length as N). Or doesn't it? Correct me if I am wrong. YohanN7 (talk) 00:00, 10 May 2011 (UTC)
That's the point call Indduction i and strong induction I
Then what I have proved it that ZFCI<=>ZFCi<=>ZFCiCH<=>ZFCCH hence following it back and forth ZFCI<=>ZFCCH Hence If we assume ZFC, and not induction, we have not CH.
Hence ZFCi<=>ZFCI<=>ZFCRH which implies trivially that ZFCi<=>ZFCRH you can just never right down all the maps from R to N and N to R at the same time, but you can approximate them by 1-1 function f_N:I->R and the function f(x)= x and f(x)=-x:R->R and hence I->I invertibaly.
you should probably understand now, thanks for looking :) — Preceding unsigned comment added by WhatisFGH (talk • contribs) 03:46, 20 October 2011 (UTC)
Feferman/EFI
I added a note about an article by Solomon Feferman, though I think I may have messed up the explanation somewhat—I figured the main thing was to get the citation into the article. Any review/fixes would be appreciated. The EFI page (url in the Feferman citation) looks interesting in general and there's an overview by Koellner of the current state of CH, that also seems worth summarizing in the article. I might try, but I'm not very knowledgeable, so it would be great if someone else did it. Feferman has some other slides about his "definiteness" theory that are a little more detailed than his EFI slides, if that's of any interest. 64.160.39.72 (talk) 01:57, 5 February 2012 (UTC)
Woodin
Hugh Woodin appears to have changed his mind regarding the truth value of CH. This should be reflected in the article. (See e.g. the Hugh Woodin wiki page.) YohanN7 (talk) 22:35, 9 April 2012 (UTC)
- Can you link a recent paper by him to that effect? JRSpriggs (talk) 11:16, 10 April 2012 (UTC)
- No, I have nothing better than hearsay, meaning what you find on the net when searching "Ultimate L continuum hypothesis" in Google. I'll look a little more carefully...
- Here is a nontechnical article. Better than nothing, but not by him, and thus not good enough for a reference. http://www.newscientist.com/article/mg21128231.400-ultimate-logic-to-infinity-and-beyond.html?full=true
- YohanN7 (talk) 15:33, 10 April 2012 (UTC)
Never mind the article. It will not be changed before a publication comes anyway. The interesting thing for me is if he has changed his mind. Does anyone of you gurus have an idea? Ultimate L seems to be a model of ZFC + a bunch of large cardinal axioms (including Woodin cardinals). There are lecture notes on it from a set theory workshop in 2010 available on the net. YohanN7 (talk) 20:20, 10 April 2012 (UTC)
- By secondhand conversation, I do believe he has changed his mind at least to some extent. His previous argument apparently rested on an argument that he thought had that would show there was a limit to the large cardinals you can have in HOD. When he really tried to nail this argument down, it apparently fell apart, and so he had to rethink. The details of what he thinks now, I couldn't tell you. --Trovatore (talk) 21:13, 10 April 2012 (UTC)
- Tnx for reply Trovatore. The reason that I'm interested is that CH is such a great mathematical problem. It's deep deep deep, but still a layman like me can understand the statement of it. YohanN7 (talk) 11:29, 13 April 2012 (UTC)
Questions
Does anyone know, if;
What this evaluates to?
Edit: It won't let me format that how i wanted to - basically I mean what is 2 to the power of 2 to the power of 2 to the power of 2 to the power of 2 and so on. — Preceding unsigned comment added by 109.149.174.130 (talk • contribs) 16:24, 23 October 2012
- Hi 109. This is an article talk page, which is intended for discussions aiming at improving the article. General questions like this can be asked at Misplaced Pages:Reference desk/Mathematics. --Trovatore (talk) 19:18, 23 October 2012 (UTC)
My apologies, cheers. — Preceding unsigned comment added by 86.151.16.138 (talk) 20:37, 28 October 2012 (UTC)
Proofs of certain consequences of GCH
Since a recent edit has implicitly raised the question of how the formulas in Continuum hypothesis#Implications of GCH for cardinal exponentiation are justified. I will provide proofs here.
First, take notice of the following facts:
- α < β implies ;
- the properties of exponentiation given at Cardinal number#Cardinal exponentiation;
- GCH implies ;
- GCH implies the axiom of choice which, in turn, implies and in particular for infinite cardinals κ and ν; and
- AC (and thus GCH) also implies König's theorem (set theory).
Now, suppose that α ≤ β+1, then
which means
On the other hand, suppose that β+1 < α, then
which means
If we further suppose that where cf is the cofinality operation, then any function from to must be bounded above by some And γ has a cardinality where δ < α. The cardinality of the set of functions so bounded by γ is
Adding these together for the possible values of γ gives
which means
On the other hand, if we further suppose then by one of the corollaries of König's theorem we have
and thus
which means
These were what was to be proved. JRSpriggs (talk) 10:05, 13 November 2012 (UTC)
Result by Laszlo Patai
Continuum hypothesis#The generalized continuum hypothesis contains the following statement, which is tagged as needing a citation:
"A recent result of Carmi Merimovich shows that, for each n≥1, it is consistent with ZFC that for each κ, 2 is the nth successor of κ. On the other hand, Laszlo Patai proved, that if γ is an ordinal and for each infinite cardinal κ, 2 is the γth successor of κ, then γ is finite."
Are those two results published? Using Google Scholar, I have been unable to locate a source by Laszlo Patai containing this statement. The source by Merimovich which the first part is apparently based on might be
Merimovich, Carmi (2007). "A power function with a fixed finite gap everywhere" (PDF). J. Symbolic Logic. 72 (2): 361–417. doi:10.2178/jsl/1185803615. MR 2320282. Zbl 1153.03036.
Is there a source for the part attributed to Laszlo Patai? -- Toshio Yamaguchi 13:07, 11 July 2013 (UTC)
- Ladislaus Patai wrote a paper "Über die Reihe der unendlichen Kardinalzahlen" in 1926, published in "Mathematische Zeitschrift" in 1928. But I cannot find this theorem there.
- The proof is easy by today's standards:
- Assume that , so . Assume for all . Let be minimal such that . Note that has to be a limit ordinal , and must be a singular cardinal.
- Why? First, .
- Second: Clearly , as .
- Third: .
- But the sequence is eventually constant with value , so by the Bukovsky-Hechler theorem also has this value , contradicting the assumption.
- Assume that , so . Assume for all . Let be minimal such that . Note that has to be a limit ordinal , and must be a singular cardinal.
- --Aleph4 (talk) 16:44, 13 September 2013 (UTC)
AC or ~AC
Actually, in ZF, I think the Aleph hypothesis does imply the axiom of choice. It doesn't in ZFU (with urelements) or ZF- (- regularity). Let me see. I'll have to check my references, but
implies PW:
- The power set of a well-ordered set can be well-ordered.
implies AC. — Arthur Rubin (talk) 15:50, 3 September 2013 (UTC)
- Yes, indeed.—Emil J. 17:11, 3 September 2013 (UTC)
- Found a specific theorem. Theorem 13.3.1 at Rubin, Jean E. (1967). Set Theory for the Mathematician. Holden-Day. p. 319. LCCN 67-13848. shows that, under some circumstances, in NBGU, AH implies the well-ordering theorem, which is known to be equivalent to the axiom of choice. Those circumstances are met if there are no urelements, as in NBG set theory. I'll restore the original comment that AH implies AC. — Arthur Rubin (talk) 02:54, 4 September 2013 (UTC)
ZF + AH -> AC_AC-AC_or_~AC-2013-09-06T04:53:00.000Z">
Obviously, ZF + AC -> ( GCH <-> AH ). And, as I showed at Talk:Axiom of choice/Archive 4#Another try, ZF + GCH -> AC. If one can also show that ZF + AH -> AC, then it follows that ZF -> ( GCH <-> AH ).
It suffices to show for all ordinals α that Vα can be injected into the ordinals. However, there is a difficulty with the argument by Arthur Rubin above because it does not deal with the case that α is a limit ordinal. If one simply tries to aggregate the sequence of injections together, one runs into the fact that one is implicitly using AC to select one injection (or well ordering) at each ordinal below α.
This problem can be fixed by restricting ourselves to just picking one item provided that it is sufficiently large. Choose a single bijection f from P(ωα+1) to ωα+2. We will use this to construct a bijection from Vω+α to an ordinal between ωα+1 and ωα+2.
Suppose S is any subset of ωα+1. Let g(S) = ωα+2·rank(S) + f(S). Let h be the result of collapsing g to squeeze out the holes in its image. Let l be defined inductively on Vω+α by l(T) = h( { l(U) | U ∈ T } ). Then l is the desired injection from Vω+α to the ordinals. We use AH again (no use of AC here though) to verify that the elements of rank ω+β are mapped into a range beginning between ωβ and ωβ+1 and ending between ωβ+1 and ωβ+2; which fact is needed to make sure that our original choice of f had a sufficiently large domain. JRSpriggs (talk) 04:53, 6 September 2013 (UTC)_AC"> _AC">
- I'm not sure I follow your proof. The proof in Set Theory for the Mathematician that PW implies AC is as follows:
- For any fixed α we will show by transfinite recursion on β ≤ α that Vβ can be well-ordered, by constructing a specific relation Sβ (extending Sγ for γ < β)
- Let λ = H(Vα) By PW, P(λ) can be well-ordered by a specific relation R
- If β is a limit ordinal (or 0), we can construct .
- If β = γ+1, then we find the order type of Vγ under Sγ is an ordinal δ, and there is a unique order-preserving function fγ mapping Vγ onto δ. As Vγ is a subset of Vα, δ < λ We then define a function g from Vβ = P(Vγ) into P(λ) by
- gγ(x) = the range of fγ restricted to x.
- Finally, we define Sβ by:
- This proof shows that, for any α, Vα can be well-ordered. But any set is a subset of some Vα, so it follows that any set can be well-ordered. — Arthur Rubin (talk) 10:41, 6 September 2013 (UTC)
- Never mind. Your proof is the same as mine, as we can show (also by transfinite induction) that λω+α = ωα+1. — Arthur Rubin (talk) 10:54, 6 September 2013 (UTC)
- Yes, that is an essentially similar way of proving it. I especially like the use of Hartog's number as a way of avoiding having to figure out what is large enough domain for f. I wish I had thought of that. JRSpriggs (talk) 06:31, 7 September 2013 (UTC)
AC and the two versions of GCH
User:JRSpriggs made a short remark in a recent edit correcting (thank you!) my previous edit. I would like to expand this remark here for two reasons: I want to help others avoid the mistake that I had made; also, perhaps we can add a short form of this remark into the article itself.
I will write Z0 for ZF without the axiom of foundation and without the axiom of replacement.
There are two versions of GCH:
- GCHpower: For all sets , every subset of the power set of either is equinumerous with or can be injected into .
- GCHaleph: For all ordinals we have .
- GCHpower is apparently stronger than GCHaleph; the implication GCHpower GCHaleph is already provable in Z0.
- GCHaleph implies that
- ... the power set of every is well-orderable. (trivial, in Z0)
- ... the power set of every well-orderable set is well-orderable. (easy from 1., but needs replacement)
- ... every set has a well-order. (The implication from 2. is non-trivial but well-known. Needs foundation. The standard proof uses induction of von Neumann's hierarchy.)
- ... AC holds. (easy from 3.)
- ... every set is equinumerous with some . (Easy from 4. Replacement used again.)
- ... GCHpower holds.
So the two versions are indeed equivalent over the base theory ZF. Still I think that the (apparently) "stronger" version GCHpower should be mentioned as the GCH. When we mention Sierpinski's proof, we should clarify that he proved AC from GCHpower.
(In ZF, AC also follows from GCHaleph, but the interesting part is the implication from "P(well-order)=well-orderable" to AC, which has nothing to do with cardinal arithmetic. Was Sierpinski also the author of this theorem?)
--Aleph4 (talk) 12:48, 12 September 2013 (UTC)
- You did notice this is discussed in the section above, right?—Emil J. 13:47, 12 September 2013 (UTC)
Yes, I should have referenced the preceding discussion, and adapted my notation. Sorry. The preceding discussion gives the proof of (1→)2→3. My point is that the different character of the two implications between GCH (GCHpower) and AH (GCHaleph) is not made clear in the article. (But if I cannot make this clear on the discussion page, I won't even try on the article page.) --Aleph4 (talk) 15:58, 13 September 2013 (UTC)
ZF & NGB
The lead has been going back and forth for a few days w/o me being involved except for a revert. Does the lead need to mention NGB set theory? Perhaps so (I have no idea), but in that case, the relationship between ZF and NGB set theories must be described - otherwise it's just confusing. Please discuss it here, it's what the talk page is for. I will not interfere. YohanN7 (talk) 22:27, 5 January 2014 (UTC)
- I might have added some more details as Eleuther did were it not for the fact that this is the lead which is merely supposed to summarize the article. The details are already available in Continuum hypothesis#Impossibility of proof and disproof in ZFC at the second paragraph. Godel's proof can easily be adapted to ZF, so there is no need to complicate things by dragging Von Neumann–Bernays–Gödel set theory into it. JRSpriggs (talk) 05:12, 6 January 2014 (UTC)
- The key sentence (from Von Neumann–Bernays–Gödel set theory) seems to be A statement in the language of ZFC is provable in NBG if and only if it is provable in ZFC. As far as I can tell, two sentences would be needed in the second paragraph if mention of NGB is to be included here. It could also be inserted as a parenthetical remark - or as a "popup" citation; Gödel used NGB set theory in which statements are provable if and only if they are provable in ZFC - if people feel strongly enough about it. Just a thought. YohanN7 (talk) 13:47, 6 January 2014 (UTC)
- The problem with the lead is some clumsy prose, which can be improved, and the incorrect off-hand assertion that ZF is "the standard foundation of modern mathematics," which is simply not the case. Most mathematicians grant that set theory has a foundational role, but I doubt that most would go so far as to select a particular axiomatization as "THE" foundation. NBG is an attractive alternative, and there are many others --- it's an area of active research. However, the lead of this article isn't the place to discuss the issue. My initial idea was just to water down the incorrect assertion to "the standard expression of set theory," acknowledging that ZF is the most popular axiomatization. But that was reverted, as was my most recent attempt to simply remove the incorrect assertion. The article seems to be under the protection of a ZF advocate. Eleuther (talk) 07:24, 7 January 2014 (UTC)
- I have to agree partially with Eleuther here, though possibly for different reasons. Calling ZF "the foundation" is a fundamentally formalist POV. Merely claiming that there is a foundation is a foundationalist POV. This is pretty important in context, because if you call ZF "the" foundation, and then talk about CH being neither provable nor refutable from ZF, then you over-weight the position that CH can't be decided in any way at all, which is controversial. --Trovatore (talk) 08:10, 7 January 2014 (UTC)
- I see the point as well. I did the revert because, if the CH and ~CH aren't provable from, say, the axioms of field, then it isn't really interesting. What is interesting, in fact it's the main point, is that you can bring on most of all of mathematics based on most all of established axioms of set theory and yet fail to prove CH or ~CH.
- This must be communicated to the reader in the lead. It can surely be done in a neutral tone. As of present, the lead uses common POVs as Trovatore points out (the most common ones I suppose). YohanN7 (talk) 13:21, 7 January 2014 (UTC)
- Yeah, needs thought. I just tweaked the sentence to reverse the order of "proved" and "disproved" and make it clear that they're parallel (this has no implication as to whether a proof or disproof would be more surprising; I just think "proved nor disproved" sounds better than "disproved nor proved"). I took another look at the ZF thing and couldn't immediately think of a good solution.
- One more monkey wrench to throw into the mix: If we're going to talk about a particular formal theory, I think ZFC is a better choice than ZF. It's not even completely clear which formulation is the "real CH" in the absence of choice. --Trovatore (talk) 06:39, 9 January 2014 (UTC)
- This must be communicated to the reader in the lead. It can surely be done in a neutral tone. As of present, the lead uses common POVs as Trovatore points out (the most common ones I suppose). YohanN7 (talk) 13:21, 7 January 2014 (UTC)
"disproved nor proved"
JR's point seems to be that Goedel's contribution is listed first and Cohen's second (same as the chronological order). But the unusual word order "disproved nor proved" really does not get this across; it just looks weird. I suggest that if we want to say that Goedel showed it couldn't be disproved in ZFC and Cohen showed it couldn't be proved in ZFC, then that is what needs to be said. But at that level of the lead, I don't know that we need to get that specific, and I think we should just go back to "proved nor disproved".
- Again, it should be ZFC, not ZF. --Trovatore (talk) 07:41, 9 January 2014 (UTC)
- Yes, ZFC if anything. Also, could we get rid of the annoyingly prudent "if ZF set theory is consistent" clause in the lead? Pathological cases aren't of interest to the general reader (and hardly anyone else). (How on earth has it not become standard to implicitly assume consistency in the math lingo.) YohanN7 (talk) 15:57, 9 January 2014 (UTC)
- Because it might turn out to be inconsistent. Tkuvho (talk) 16:00, 9 January 2014 (UTC)
- Yes, and in the intervening 10 years we all have to use awkward language in encyclopedias and elsewhere so that we don't forget. You miss the point. In the rest of the article we could be as precise as we wish, provided the sun rises tomorrow. YohanN7 (talk) 16:14, 9 January 2014 (UTC)
- You appear to be comfortable in your faith that the sun is less likely to rise tomorrow than ZFC is likely to be consistent, and you are certainly entitled to it. However issues of faith may constitute POV and shouldn't necessarily influence issues of content. Tkuvho (talk) 16:35, 9 January 2014 (UTC)
- No, I am not - provided of course that both the sun and ZFC exist. I am just expressing my surprise that mathematics hasn't rationalized its internal language in this case so that it becomes less cumbersome. In most contexts there are obvious implicit assumptions not spelled out each and every time. If a not very obvious assumption is used then it is spelled out. YohanN7 (talk) 18:14, 9 January 2014 (UTC)
- You appear to be comfortable in your faith that the sun is less likely to rise tomorrow than ZFC is likely to be consistent, and you are certainly entitled to it. However issues of faith may constitute POV and shouldn't necessarily influence issues of content. Tkuvho (talk) 16:35, 9 January 2014 (UTC)
- Yes, and in the intervening 10 years we all have to use awkward language in encyclopedias and elsewhere so that we don't forget. You miss the point. In the rest of the article we could be as precise as we wish, provided the sun rises tomorrow. YohanN7 (talk) 16:14, 9 January 2014 (UTC)
- Because it might turn out to be inconsistent. Tkuvho (talk) 16:00, 9 January 2014 (UTC)
- Yes, ZFC if anything. Also, could we get rid of the annoyingly prudent "if ZF set theory is consistent" clause in the lead? Pathological cases aren't of interest to the general reader (and hardly anyone else). (How on earth has it not become standard to implicitly assume consistency in the math lingo.) YohanN7 (talk) 15:57, 9 January 2014 (UTC)
- JRSpriggs, are you going to address this? I continue to object to "disproved nor proved". The unusual word order gives the reader a problem to solve; the fraction of readers who come up with your intended solution, I expect to be small. There is just no real indication that the word order corresponds to which mathematician did what. I'm concerned that some readers will come up with an unwanted solution, such as losing the parallelism between "disproved" and "proved". --Trovatore (talk) 23:17, 9 January 2014 (UTC)
- Would "deduced" be better than "proved"? Tkuvho (talk) 10:10, 13 January 2014 (UTC)
"a" or "the" standard
There has been some back-and-forth on whether ZF is "a standard foundation" or "the standard foundation". I feel that using the definite article is a POV. Category theory provides another "standard" foundation, for example. There are other varieties of set theory that are similarly considered "standard" by subsets (no pun intended) of the mathematical public, such as MK or NBG. Tkuvho (talk) 08:23, 9 January 2014 (UTC)
- Yes, as I explained in the section above, I think that needs to change. The notion that mathematics is founded on formalism at all is itself problematic. (And for the third time, whatever we say about foundational-ness, it should be ZFC, not ZF.)
- How about something like "the most common set of formal axioms for set theory, which can be used to derive most of standard mathematics"? --Trovatore (talk) 08:28, 9 January 2014 (UTC)
- This would involve explaining that the first occurrence of set is in a metamathematical sense, whereas the second in the technical sense of set theory :-) Also this seems a bit wordy. So long as one uses the indefinite article we stay away from the claim that mathematics is "founded" on formalism. So all in all "a standard foundation" seems appropriate. Tkuvho (talk) 09:07, 9 January 2014 (UTC)
- I agree with all of this. The issue is too complicated to phrase briefly, and anyway, it is out of place in the lead of this article. The simplest approach is just to remove the problematic foundational claim, and replace it with something more neutral, like "the most common axiomatization of set theory." I tried that however, and was reverted. I won't try it again, but I will support it if someone else does it. Ideally, JRSpriggs would be the one to make the change. Eleuther (talk) 10:56, 9 January 2014 (UTC)
- I think the meaning of "standard" (as opposed to, say, "canonical") is precisely "the most common". I don't think this involves any ontological commitments at all, but is rather an accurate description of current mathematical practice. Tkuvho (talk) 13:29, 9 January 2014 (UTC)
- I disagree. The term "standard" has a lot more weight than "most common." We don't describe the Democratic members of the US Senate as standard, and the Republicans as non-standard. "Standard" implies not just a majority, but a majority consensus that the standard should be accepted as standard for some reason. Eleuther (talk) 23:27, 9 January 2014 (UTC)
- I think the meaning of "standard" (as opposed to, say, "canonical") is precisely "the most common". I don't think this involves any ontological commitments at all, but is rather an accurate description of current mathematical practice. Tkuvho (talk) 13:29, 9 January 2014 (UTC)
- I agree with all of this. The issue is too complicated to phrase briefly, and anyway, it is out of place in the lead of this article. The simplest approach is just to remove the problematic foundational claim, and replace it with something more neutral, like "the most common axiomatization of set theory." I tried that however, and was reverted. I won't try it again, but I will support it if someone else does it. Ideally, JRSpriggs would be the one to make the change. Eleuther (talk) 10:56, 9 January 2014 (UTC)
- This would involve explaining that the first occurrence of set is in a metamathematical sense, whereas the second in the technical sense of set theory :-) Also this seems a bit wordy. So long as one uses the indefinite article we stay away from the claim that mathematics is "founded" on formalism. So all in all "a standard foundation" seems appropriate. Tkuvho (talk) 09:07, 9 January 2014 (UTC)
- Agreeing partly with Trovatore, mathematicians just do what they do (informally). Logicians come along later and clean up the mess by formalizing it. So I am not saying that mathematicians refer back to ZFC when they work. Rather what I am saying is that logicians have found that what mathematicians do (in most cases, when they are consistent) can be formalized by the axioms of ZFC. Other foundational systems do not fit so well with what mathematicians actually do. NBG and MK are just slight variations on ZFC. Frankly, I have no intuition for NF (new foundations for set theory) or topos (category theory) so I do not see how they could be the basis of mathematics. JRSpriggs (talk) 09:31, 10 January 2014 (UTC)
- To me, the question is not really about alternative foundations; it's about natural strengthenings of ZFC. ZFC does not decide the issue, but some natural strengthening, the addition of some axiom that we can come to the conclusion is the right one to add, might. The natural place to start is large cardinal axioms; it's pretty clear that these axioms (except the ones that turn out to lead to contradictions) are "correct", and their negations are "incorrect". That's why it's misleading to state that we are "free" to add either a statement or its negation to ZFC, if both are consistent; they may both be consistent, but one may be better than the other, in a way similar to the way large-cardinal axioms are better than their negations.
- Now, large-cardinal axioms themselves, at least the sort we know about, do not decide CH either, but that does not settle the matter; there might be other axioms for which we can make the judgment that they are better than their negations, and which do decide CH. --Trovatore (talk) 09:59, 10 January 2014 (UTC)
- Agreeing partly with Trovatore, mathematicians just do what they do (informally). Logicians come along later and clean up the mess by formalizing it. So I am not saying that mathematicians refer back to ZFC when they work. Rather what I am saying is that logicians have found that what mathematicians do (in most cases, when they are consistent) can be formalized by the axioms of ZFC. Other foundational systems do not fit so well with what mathematicians actually do. NBG and MK are just slight variations on ZFC. Frankly, I have no intuition for NF (new foundations for set theory) or topos (category theory) so I do not see how they could be the basis of mathematics. JRSpriggs (talk) 09:31, 10 January 2014 (UTC)
"the other axioms of set theory"
I have expressed qualified support for Eleuther's concerns, but I do not think this latest effort works very well:
- In 1963, Paul Cohen proved that the hypothesis is independent of the other axioms of set theory, based on earlier work by Kurt Gödel in 1940. This surprising result means that one is free to assume that such sets exist or that they do not. Cohen was awarded the Fields Medal in 1966 for his proof.
The most problematic aspect is the second sentence, which is both of unclear meaning and seriously POV if given any substantive meaning. I have removed that sentence.
But I'm not all that thrilled with the rest of it either, though I agree it is simpler. Mainly I think the phrasing "independent of the other axioms of set theory" is problematic. First, "other" axioms of set theory suggests that CH is an axiom of set theory, which is an unusual position. Then too, " 'the' other axioms of set theory" suggests that there's a canonical list of axioms of set theory, which I thought was Eleuther's complaint in the first place. --Trovatore (talk) 00:31, 10 January 2014 (UTC)
- If you want input from a non-mathematician (who might still know a little something about math): The lead is not good. It manages to say that CH is independent from the (other) axioms of set theory. The general reader would react with "so what".
- The lead should establish
- CH is a mathematical statement
- CH was perhaps the most prestigious mathematical problem of the last century
- It cannot be proved using (standard) mathematics
- It cannot be disproved using (standard) mathematics
- Therefore Hilbert's first problem cannot be solved in it's original form
- The lead should address:
- Is Hilbert's first problem resolved?
- Ongoing work towards resolving CH
- The lead is now extremely short. There is plenty of space to beef out a little (on what was the most formidable (yes, POV) mathematical problem of the last century.
- The version of a couple of weeks ago was perhaps bad, but this is decidedly worse. Actually, the main message that the general reader will pick up from the lead is that Cohen got a fields medal. YohanN7 (talk) 01:22, 10 January 2014 (UTC)
- Actually, I don't think your bullet point about "Hilbert's first problem cannot be solved in its original form" is so clear. Hilbert asked for a proof of CH (the original wording does not seem to have contemplated a disproof, if I remember correctly, but I suppose he would also have accepted that). But he didn't specify any limitations on what axioms might be used, and ZFC had not at the time been formulated, so he could not have meant ZFC. If Woodin's arguments around the year 2000 had eventually been accepted as having established ~CH, would that have satisfied Hilbert? I don't see any way we can know. --Trovatore (talk) 01:58, 10 January 2014 (UTC)
- The "bullets" are just bullets, not a draft for a new lead. But surely, there was a notion of "proof" even back in 1900 though we today would probably define "proof" as "proof in ZFC" by default (though it is customary to mention choice if used). I never heard about Hilbert objecting to ZFC (he died 1943) so I don't think the conclusion "Hilbert's first problem cannot be solved in it's original form" is too wrong or too unsupported or uncontroversial. Also, your discussion above could (in modified form) provide some content for bullets #5 and #6. Woodins and others work in the modern era is precisely the thing I mean with the last bullet.
- I maintain that the lead must not be totally impeccable technically, or even impeccable POV-wise provided the most common POV is used, if that hinders just about everything interesting to be even mentioned. YohanN7 (talk) 02:56, 10 January 2014 (UTC)
- Here's the point: What the independence result says is that you can't decide CH if you're limited to certain axioms. It's certainly interesting that that collection of axioms is sufficient to formalize virtually all of "normal" math, and still doesn't decide CH. But it doesn't follow, by itself, that you can't decide CH in some other way, if you're not limited to those axioms.
- So the question is not at all whether Hilbert would have "objected" to ZFC (meaning, presumably, objected to one or more of the axioms), but whether his question was constrained to using only ZFC, and not more. And clearly, given that ZFC had not been formulated, the question could not have been constrained to using exactly ZFC. So you would have to argue that Hilbert was implicitly placing limitations that would constrain his methods to be less-than-or-equal-to ZFC, and while that may be true, I don't see how you establish it.
- The lead must not over-weight the position that CH is "absolutely undecidable". I think the best way to avoid it is to call out a set of axioms explicitly, as the old lead did, but explain that that set is enough to do most "normal" math but not decide CH. --Trovatore (talk) 03:10, 10 January 2014 (UTC)
- I maintain that the lead must not be totally impeccable technically, or even impeccable POV-wise provided the most common POV is used, if that hinders just about everything interesting to be even mentioned. YohanN7 (talk) 02:56, 10 January 2014 (UTC)
- I understand what you mean, and again your answer contains some substance that could go into the article. I agree that the former lead was better, in the sense that it was explicit about at least something. I suggest your version of 00:13 January 10 is moved back for now. YohanN7 (talk) 04:40, 10 January 2014 (UTC)
restoring ZFC in the lede
The recent removal of the mention of ZFC from the lead is misguided. The question of CH can only be made precise in the context of ZFC (or ZF) and this should be mentioned. I have the impression that only one editor opposes the inclusion of such an explicit mention. It would be nice if the editors expressed themselves on this limited point. Tkuvho (talk) 09:25, 10 January 2014 (UTC)
- Well, I don't think I agree with your second sentence (CH is a precise question in the context of informal set theory; you don't have to specify any formalization). But I do agree with your first sentence; without a formalization, CH per se makes sense, but the independence of CH does not, because independence is a negative result ("it cannot be proved"), and to establish such a result, you can't really get started without a precise limitation on the methods of proof. --Trovatore (talk) 10:12, 10 January 2014 (UTC)
- Yes, restore ZFC. B t w, did Cohen base his work on that of Gödel? (The current lead says so.) YohanN7 (talk) 10:26, 10 January 2014 (UTC)
- Um, in a certain sense. The original version of forcing was a modification of the construction of Goedel's L, which was the (class) model used to establish the consistency of CH. The original version was called ramified forcing, and I don't really know much about it, because it is generally not taught now. Within a few years the "ramified" part was found to be more trouble than it was worth; modern, unramified forcing no longer looks much like the levels of L.
- Still, it's the first time I've ever heard anyone take the view that Cohen's proof was an extension of Goedel's; I'd have to think about it, but off the top of my head I don't think that's true in any very interesting way. (In an uninteresting way, pretty much all set theory done at that time was "based" on Goedel's work, because Goedel was the first person to really do serious set-theory-as-set-theory beyond what in retrospect, with no disrespect to the brilliant men who developed them, we can call "elementary methods".) --Trovatore (talk) 10:40, 10 January 2014 (UTC)
- Gödel showed that CH is consistent with NBG. That was the first hard part of the Hilbert problem. Cohen then assumed Gödel's result, and incorporated it in his proof of the independence of CH from ZF (ZF being a proper subset of NBG), the second hard part. That's the sense in which Cohen's proof is an extension of Gödel's -- Cohen openly assumed and used Gödel's result. That's also the sense in which I said "based on" in the modified lead. If this is the first time you've heard of it, I think you haven't read the proofs very well. Eleuther (talk) 10:46, 12 January 2014 (UTC)
- To be more clear, to show that CH is independent of ZF, one must show that both CH and not-CH are consistent with ZF. Gödel proved the first part in 1940, Cohen the second in 1963. Eleuther (talk) 12:31, 12 January 2014 (UTC)
- It did occur to me that you might be using "based on" in that sense, but in that case I don't think it's very good wording. If you have a result that breaks naturally into two pieces, as here, and one researcher proves one piece and then another finishes it off later by proving the other, I think that's the better description. You say Cohen "assumed" Goedel's result, but that's a very odd way of putting it; Cohen's proof stands alone as a proof of Con(ZFC+¬CH). There is no need to "assume" Con(ZFC+CH) in that proof. --Trovatore (talk) 17:43, 12 January 2014 (UTC)
- I replaced "based on" by "complementing", hope this is better. Tkuvho (talk) 10:06, 13 January 2014 (UTC)
- It did occur to me that you might be using "based on" in that sense, but in that case I don't think it's very good wording. If you have a result that breaks naturally into two pieces, as here, and one researcher proves one piece and then another finishes it off later by proving the other, I think that's the better description. You say Cohen "assumed" Goedel's result, but that's a very odd way of putting it; Cohen's proof stands alone as a proof of Con(ZFC+¬CH). There is no need to "assume" Con(ZFC+CH) in that proof. --Trovatore (talk) 17:43, 12 January 2014 (UTC)
- User:Eleuther has already made three reverts of the material in the introduction. Continuing this behavior may end you up in a block. Tkuvho (talk) 13:10, 12 January 2014 (UTC)
- Yes, restore ZFC. B t w, did Cohen base his work on that of Gödel? (The current lead says so.) YohanN7 (talk) 10:26, 10 January 2014 (UTC)
Multiverse approach to set theory
I may be old-fashioned, but I don't see the specific relevance of Hampkins' paper to CH; although I haven't yet read a the paper, it would seem to apply to any independent (in some sense) statement, not just CH.
Even assuming the paper is considered significant in the field. — Arthur Rubin (talk) 13:51, 27 January 2014 (UTC)
- Hamkins has a more general notion of a "switch", namely an axiom that can be adjusted at will to either be satisfied or violated (like the CH) by passing to a larger model. However, his discussion does tend to center on CH, and has immediate relevance to the philosophical debate around CH. Tkuvho (talk) 15:43, 27 January 2014 (UTC)
Danger in Bibliography
The book:
Cohen, P. J. (1966). Set Theory and the Continuum Hypothesis. W. A. Benjamin.
is not accessible: you can request it, pay for it and the there is no book and no refunds.
Suspicious? — Preceding unsigned comment added by 87.218.117.85 (talk) 09:00, 30 June 2014 (UTC)
- Buyer beware. Before you pay out money, you should make sure that the book-seller you are dealing with is reputable. If the book is out-of-print, then the book-seller should have told you that rather than taking your money and stiffing you. JRSpriggs (talk) 04:49, 1 July 2014 (UTC)
- Perhaps "Cohen, Paul Joseph (1966). Set theory and the continuum hypothesis. Addison–Wesley. ISBN 0-8053-2327-9." was meant? JRSpriggs (talk) 05:08, 1 July 2014 (UTC)
Description in first line
The first line of the article reads: "In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis, advanced by Georg Cantor in 1878, about the possible sizes of infinite sets."
While it's traditionally named the "continuum hypothesis," does it really make sense to refer to it explicitly as a "hypothesis" (including a link to the article for "hypothesis," no less)? "Hypothesis" generally refers to a testable predictive claim about a system - given that the "truth" of CH is provably independent of the standard axiomatization of mathematics (and thus we can, in a way, think of CH as a specification of a system we're working with, not a claim about the properties of an established system), this seems like a poor description. It certainly doesn't make sense to link to the article for "hypothesis," any more than it would to do the same from the description of the axiom of choice or the parallel line postulate - both of which, incidentally, are (correctly) referred to as "axioms" as I believe should be the case here.
173.66.29.191 (talk) 20:29, 9 September 2014 (UTC)
- The "system" (that is, structure) about which CH makes a claim is well-specified — just not in first-order logic. Not everyone agrees with that claim, but very few count CH as an "axiom", though they may use that term for certain propositions that imply CH.
- This talk page is not the place to have the philosophical debate about whether CH has a definite truth value, but it is reasonable to discuss whether "hypothesis" should be wikilinked. I tend to agree that it should not be, mostly because it's not a very natural spot in the text for a reader to want to say "oh, at this point I want to go read about hypotheses in general". I'll go ahead and unlink it. --Trovatore (talk) 20:43, 9 September 2014 (UTC)
Recent edits
It's not a big deal, but I think that the recent edits have been for the worse. The size of a set is, in informal terms, its cardinality. The lead can, at this point, stay informal, the term cardinality coming one sentence later. The article now links Set (mathematics), not infinite set. Worse, it speaks of sets with infinite elements. YohanN7 (talk) 13:16, 14 November 2014 (UTC)
- I agree. It violates WP:TECHNICAL. We should keep the wording in the lead as simple as possible, even at the expense of precision, and save the more precise wording for later. Size vs cardinality is an example of that. I would be in favor of reverting to the earlier wording. —David Eppstein (talk) 16:08, 14 November 2014 (UTC)
Proposed Things to Add
Moved to Talk:Cantor's diagonal argument/Arguments.
Improved example requested
Can a better example for bijection be provided? The example given, "Hence, the set {banana, apple, pear} has the same cardinality as {yellow, red, green}." lists three fruits that exist in more than one of the colors given. Mjpollard (talk) 14:17, 6 November 2016 (UTC)
- There also exists several distinct bijections. YohanN7 (talk) 14:20, 8 November 2016 (UTC)
Proof ?
The "independence" section is just a list of references, which should be moved to the history section. The independedence section should have an outline of the actual proof instead, Misplaced Pages is supposed to contain facts rather than just references. Can anyone knowledgeable make a go at doing this ? — Preceding unsigned comment added by 194.80.232.19 (talk) 08:49, 5 May 2017 (UTC)
- I think the independence section sketches the history of how independence was proved, and some of its consequences. The independence proof, while completely standard at the graduate level, is too long to be sketched in any detail here. On one hand it is necessary to develop enough of the theory of L to show CH is consistent with ZFC: on the other it is necessary to develop enough of the theory of forcing to show CH is unprovable. Neither of those can be done in the space of an encyclopedia article.
- The article here is meant to give an overview of CH - an encyclopedia entry - rather than to present a full textbook presentation. It is possible to add a one-sentence summary of each of the halves of the proof, and I've put some initial ones into the article now. My experience on Misplaced Pages is that trying to "sketch" nontrivial proofs tends to cause more confusion than it solves. We are simply not the correct place for lengthy technical mathematics. — Carl (CBM · talk) 10:54, 5 May 2017 (UTC)
"equivalently ... i.e. it (the cardinality of the set of real numbers) equals the cardinality of the power set of the integers"
Is saying that really equivalent to the continuum hypothesis? There seems to be a bijection between the set of real numbers and powerset of the natural numbers here, which would imply the continuum hypothesis is true if they were equivalent. --AkariAkaori (talk) 00:03, 10 July 2017 (UTC)
- Thanks for pointing out that error. I tried to fix it. JRSpriggs (talk) 02:33, 10 July 2017 (UTC)
Malliaris and Shelah
There is a recent study by these authors which has been widely reported in the press, and seems highly relevant to the CH. I'm not a mathematician, so the technicalities are beyond me, and I was hoping to find a clear explanation in this article. There's a summary here: https://www.scientificamerican.com/article/mathematicians-measure-infinities-and-find-theyre-equal/ — Preceding unsigned comment added by 86.154.202.49 (talk) 19:42, 16 September 2017 (UTC)
- They proved that a certain pair of infinite cardinals are equal. It was previously thought that whether they were equal would depend on the continuum hypothesis, but it doesn't. So this publication made the question they studied less relevant to CH, not more, I think. —David Eppstein (talk) 19:53, 16 September 2017 (UTC)
- Yeah, I would quibble with David's analysis in only one way, which is that I think it was pretty much irrelevant even before the result.
- The question relates to two "cardinal invariants" (our article is at cardinal characteristic of the continuum, which I have to admit is a more accurate name, even if longer-winded). That's a bunch of named cardinals that are all known to be at least ℵ1 and at most c. So if CH is true, that is, if ℵ1=c, then the whole theory trivializes. These two particular invariants p and t are not particularly special in that way. --Trovatore (talk) 04:51, 18 September 2017 (UTC)
- I hope it's clear that I'm not disparaging the result in any way. It just doesn't have much to do specifically with CH. --Trovatore (talk) 05:56, 18 September 2017 (UTC)
- I didn't know there was a name and article for these cardinalities, so thanks — I learned something from this conversation after all. I added a link to the cardinal characteristic article on Maryanthe Malliaris, but perhaps it could be integrated better into the article, so if you want to give it a shot go ahead. Conversely, perhaps the work of Malliaris and Shelah should be mentioned at the cardinal characteristic article. (There's an older reference by Shelah but none of the new results.) —David Eppstein (talk) 17:33, 18 September 2017 (UTC)
Conjecture or Hypothesis?
Should this "hypothesis" be categorized under Category:Conjectures rather than Category:Hypotheses? Or should the definitions of those categories include historical naming that goes against current convention. Perhaps the article should be renamed (with a redirect). Dpleibovitz (talk) 21:49, 28 December 2017 (UTC)
- This article is not going to be renamed. Zero chance. The proposition is universally called the "continuum hypothesis" and that's what matters. Any requested move would be WP:SNOWed.
- As for the categories, I suppose it could plausibly be in both of them. --Trovatore (talk) 22:26, 28 December 2017 (UTC)
- I don't think it fits either category. We should categorize things by what they are, not by what they are named. Category:Hypotheses is for scientific hypotheses, statements that are testable by the scientific method; the continuum hypothesis is not testable in this way. And Category:Conjectures is for a specific class of mathematical statements, the ones that some mathematicians are convinced to be true but for which a proof is unknown, giving an unsolved problem for future research. In contrast, the existence of a proof for the continuum hypothesis is a settled question (there isn't one, in ZFC, unless the whole thing collapses in a pile of self-contradiction). It is currently listed in Category:Undecidable conjectures but that category is too small and oxymoronic to survive. A better choice would be Category:Axioms of set theory. —David Eppstein (talk) 22:48, 28 December 2017 (UTC)
- Well, CH is an unsolved problem for future research, and it's not an "axiom". --Trovatore (talk) 23:50, 28 December 2017 (UTC)
- What's unsolved about it? We know that it's true in some models and false in others. It makes no sense to ask whether it's "really" true, in "the real world", since the real world isn't a mathematical abstraction. So what more could you want to know that might be amenable to proof? —David Eppstein (talk) 00:31, 29 December 2017 (UTC)
- Well look, ZFC is not the starting point. The starting point is the cumulative hierarchy; that's what we want to know things about. We will never prove or disprove CH from ZFC, but we might be able to figure out whether it's true in the cumulative hierarchy.
- To a realist, that question (whether CH is true in the cumulative hierarchy) is completely well-specified. If you're not a realist, then maybe you don't think it is completely well-specified, but it is still open to examination whether the picture of the cumulative hierarchy might justify (or at least motivate) extensions of ZFC that decide CH. --Trovatore (talk) 00:52, 29 December 2017 (UTC)
- What makes the cumulative hierarchy special among all the other models one might choose? Do you also insist that for statements of arithmetic, we want to know whether they are true only for the field of algebraic numbers and not for any other field? —David Eppstein (talk) 02:10, 29 December 2017 (UTC)
- I'm not sure I'm quite following you here. To me "arithmetic" means the theory of the natural numbers. The parallel is that the natural numbers are not defined by axioms; rather, we have a mental picture of the naturals that we start with, and justify the axioms in terms of that picture. Set theory is also like that. --Trovatore (talk) 02:19, 29 December 2017 (UTC)
- What makes the cumulative hierarchy special among all the other models one might choose? Do you also insist that for statements of arithmetic, we want to know whether they are true only for the field of algebraic numbers and not for any other field? —David Eppstein (talk) 02:10, 29 December 2017 (UTC)
- What's unsolved about it? We know that it's true in some models and false in others. It makes no sense to ask whether it's "really" true, in "the real world", since the real world isn't a mathematical abstraction. So what more could you want to know that might be amenable to proof? —David Eppstein (talk) 00:31, 29 December 2017 (UTC)
- Well, CH is an unsolved problem for future research, and it's not an "axiom". --Trovatore (talk) 23:50, 28 December 2017 (UTC)
- I don't think it fits either category. We should categorize things by what they are, not by what they are named. Category:Hypotheses is for scientific hypotheses, statements that are testable by the scientific method; the continuum hypothesis is not testable in this way. And Category:Conjectures is for a specific class of mathematical statements, the ones that some mathematicians are convinced to be true but for which a proof is unknown, giving an unsolved problem for future research. In contrast, the existence of a proof for the continuum hypothesis is a settled question (there isn't one, in ZFC, unless the whole thing collapses in a pile of self-contradiction). It is currently listed in Category:Undecidable conjectures but that category is too small and oxymoronic to survive. A better choice would be Category:Axioms of set theory. —David Eppstein (talk) 22:48, 28 December 2017 (UTC)
wording in section on "cardinality of infinite sets"
I have limited math understanding, but can I risk asking a possibly pedantic question: should the sentence "That is, every set, S, of real numbers can either be mapped one-to-one into the integers or the real numbers can be mapped one-to-one into S." be changed to say "infinite set S" or should something about "subsets" be inserted somewhere? 103.27.161.6 (talk) 11:33, 21 February 2019 (UTC)johnjPerth
- It says "one-to-one into the integers", so finite sets are OK. If it said "one-to-one onto the integers", you'd be correct. That said, if it's that easy to misunderstand, maybe we should change the wording.
As it stands, the statement is not quite correct, because if S is empty, then the reals can't be mapped onto S.--Trovatore (talk) 19:32, 21 February 2019 (UTC)- Oops — strike the last sentence. Not sure what I was thinking. --Trovatore (talk) 19:37, 21 February 2019 (UTC)
Lecture slides
Explains Cohen's proof of independence of CH. It looks pretty self contained yet is short enough for one lecture. I'm going to try to read it since other places have made the proof sound very mysterious and I have never understood it. Leaving link here for future reference and for possible use in improving the article. 2602:24A:DE47:BB20:50DE:F402:42A6:A17D (talk) 05:17, 18 August 2020 (UTC)
- The proof is not terribly mysterious. There is a lot of machinery to build and a lot of details to check, but the basic idea is straightforward. Something of that definitely could, and probably should, be conveyed in this article. We would want to be careful not to let it get out of hand; this isn't the article in which to explain forcing in detail. But we can probably say more than what the article currently says, which is Essentially, this method begins with a model of ZF in which CH holds, and constructs another model which contains more sets than the original, in a way that CH does not hold in the new model. That single sentence also does not really stand out. --Trovatore (talk) 05:29, 18 August 2020 (UTC)
- Thanks. Those slides seem easier to understand than the current article forcing (mathematics), maybe because the terminology is more familiar. Maybe the forcing article could be updated a little from it. 2602:24A:DE47:BB20:50DE:F402:42A6:A17D (talk) 00:06, 22 August 2020 (UTC)
𝔭 = 𝔱
I've just seen this Quanta article, which lead me to the papers "Model theory and the cardinal numbers 𝔭 and 𝔱" and "General topology meets model theory, on p and t", and then "Cofinality spectrum theorems in model theory, set theory and general topology". All of this is way over my head, mathematically. I'm uncertain about exactly what the proof of 𝔭 = 𝔱 actually means, and its relationship to the topic of this article. Does this now-proven hypothesis have a name, and what is the relationship of this proof to the continuum hypothesis? -- The Anome (talk) 13:18, 31 December 2020 (UTC)
- This is one of those things where there's a genuinely interesting result, but where the headlines make it sound much more spectacular than it actually is.
- These symbols 𝔭 and 𝔱 are names for two cardinal characteristics of the continuum, more typically called "cardinal invariants. Such invariants are things like
- So we know that every countable set of reals is measure 0. On the other hand, there are sets of reals that are not of measure 0, say, the unit interval. All these obvious ones have cardinality .
- But suppose CH is false, and ? Then, is there a set of size that does not have measure 0? In general, what's the smallest κ such that there's a set of size κ that is not of measure 0? Let's give that κ a name.
- So there are a whole bunch of these thingies that have been identified. If CH is true, then they all equal , and the theory trivializes.
- So 𝔭 and 𝔱 are two of these gadgets. If CH is true, then trivially 𝔭=𝔱. But before the result you're looking at, it was thought that it was likely to be consistent with ZFC that 𝔭 != 𝔱, as long as CH was false. Now we know that's not true.
- Getting back to your question, what does this have to do with the topic of this article? I'd say not very much. I hope I've clarified the extent to which a connection does exist. --Trovatore (talk) 21:08, 31 December 2020 (UTC)
Here's one connection you could arguably make. Suppose there were a mathematician who thought, "I think I can see intuitively that 𝔭 < 𝔱. Or maybe I just think it would be nicer if 𝔭 < 𝔱, and I want to add it as an axiom or something. Therefore I must reject CH."- Such a mathematician would then have to admit that this argument doesn't work (at least if he/she accepts ZFC).
- However I am not aware of anyone who took the view that CH should be false because 𝔭 should be less than 𝔱. So my view is still that there is not much connection with this article. --Trovatore (talk) 21:33, 31 December 2020 (UTC)
Update
I just came across this article about a new mathematical proof implying that the hypothesis is true. But I don't understand the subject matter well enough to add it to the page in a sensible manner, perhaps someone else can take a gander?
Here's the article that might be worth including: https://www.quantamagazine.org/how-many-numbers-exist-infinity-proof-moves-math-closer-to-an-answer-20210715/
CheersCreapuscularr (talk) 13:42, 6 August 2021 (UTC)
- All this shows is an equivalence between two other axioms for set theory. While this doesn't directly prove anything about the continuum hypothesis, the article in question goes as far as to say this "result strengthens the case against the continuum hypothesis", not for the continuum hypothesis as you have suggested. I dont know enough about the subject matter to decide if this article is relevant to this wikipedia article though. 2607:F140:400:A016:2874:B0DF:D7F7:5B4B (talk) 00:56, 7 April 2022 (UTC)
This conjecture is true.
Since this conjecture is "a conjecture which can be disproved using a counterexample", if this conjecture is in fact false, we can use this counterexample to disprove it, thus the conjecture is decidable, and if the conjecture is undecidable, then it must be true, thus, if we can prove that this conjecture is undecidable, then we can prove that this conjecture is true, which is a contradiction, like Goldbach conjecture (a counterexample is an even number ≥4 which cannot be written as sum of two primes), Fermat Last Theorem (a counterexample is an integer n≥3 and positive integers x, y, z such that x + y = z), Riemann hypothesis (a counterexample is a complex number z such that Re(z) ≠ 0, Im(z) ≠ 1/2, but ζ(z) = 0), and four color theorem (a counterexample is a graph which cannot be drawn using ≤4 colors), a counterexample of continuum hypothesis is a subset S of R such that Card(S) > Card(N) and Card(S) < Card(R). 2402:7500:916:25D6:DD5D:1928:6166:9583 (talk) 09:25, 20 August 2021 (UTC)
- You are wrong. Even if such a set S exists, it cannot be exhibited and its required properties verified in a manner which is independent of the model of set theory within which one is working. JRSpriggs (talk) 16:39, 20 August 2021 (UTC)
Per the talk-page guidelines, we're actually not supposed to discuss this here, but it would be a very interesting topic at the mathematics reference desk. Would you be interested in raising it there? Remember to state it in the form of a question, like on Jeopardy. --Trovatore (talk) 17:57, 20 August 2021 (UTC)