Misplaced Pages

2025 in paleontology: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 02:41, 2 January 2025 editSlvrHwk (talk | contribs)Extended confirmed users6,612 edits As an abbreviation of a Latin phrase, "et al." doesn't need to be italicized (similar to "etc.")← Previous edit Revision as of 10:04, 2 January 2025 edit undo188.146.13.55 (talk) Other research: Added new studyTags: Mobile edit Mobile web editNext edit →
Line 41: Line 41:


==Other research== ==Other research==
* Cowen et al. (2025) study the geochemistry of dental tissue of Devonian fish fossils from Svalbard (Norway) and Cretaceous lungfish and plesiosaur fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.<ref>{{Cite journal|last1=Cowen |first1=M. B. |last2=de Rafélis |first2=M. |last3=Ségalen |first3=L. |last4=Kear |first4=B. P. |last5=Dumont |first5=M. |last6=Žigaitė |first6=Ž. |title=Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains |year=2025 |journal=PeerJ |volume=13 |at=e18763 |doi=10.7717/peerj.18763 |doi-access=free }}</ref>

===Paleoclimate=== ===Paleoclimate===
* Evidence indicating that abrupt climate changes during the ] increased pyrogenic ] emissions and global wildfire extent is presented by Riddell-Young et al. (2025).<ref>{{Cite journal|last1=Riddell-Young |first1=B. |last2=Lee |first2=J. E. |last3=Brook |first3=E. J. |last4=Schmitt |first4=J. |last5=Fischer |first5=H. |last6=Bauska |first6=T. K. |last7=Menking |first7=J. A. |last8=Iseli |first8=R. |last9=Clark |first9=J. R. |year=2025 |title=Abrupt changes in biomass burning during the last glacial period |journal=Nature |volume=637 |issue=8044 |pages=91–96 |doi=10.1038/s41586-024-08363-3 }}</ref> * Evidence indicating that abrupt climate changes during the ] increased pyrogenic ] emissions and global wildfire extent is presented by Riddell-Young et al. (2025).<ref>{{Cite journal|last1=Riddell-Young |first1=B. |last2=Lee |first2=J. E. |last3=Brook |first3=E. J. |last4=Schmitt |first4=J. |last5=Fischer |first5=H. |last6=Bauska |first6=T. K. |last7=Menking |first7=J. A. |last8=Iseli |first8=R. |last9=Clark |first9=J. R. |year=2025 |title=Abrupt changes in biomass burning during the last glacial period |journal=Nature |volume=637 |issue=8044 |pages=91–96 |doi=10.1038/s41586-024-08363-3 }}</ref>

Revision as of 10:04, 2 January 2025

Overview of the events of 2025 in paleontology
List of years in paleontology (table)
In paleobotany
2022
2023
2024
2025
2026
2027
2028
In arthropod paleontology
2022
2023
2024
2025
2026
2027
2028
In paleoentomology
2022
2023
2024
2025
2026
2027
2028
In paleomalacology
2022
2023
2024
2025
2026
2027
2028
In reptile paleontology
2022
2023
2024
2025
2026
2027
2028
In archosaur paleontology
2022
2023
2024
2025
2026
2027
2028
In paleomammalogy
2022
2023
2024
2025
2026
2027
2028
In paleoichthyology
2022
2023
2024
2025
2026
2027
2028

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2025.

2025 in science
20242026
Fields
Technology
Social sciences
Paleontology
Extraterrestrial environment
Terrestrial environment
Other/related

Reptiles

Main articles: 2025 in reptile paleontology and 2025 in archosaur paleontology

Foraminifera

Name Novelty Status Authors Age Type locality Location Notes Images

Flabellogaudryina

Gen. et sp. nov

Valid

Kaminski & Korin

Eocene

Rashrashiyah Formation

 Saudi Arabia

A member of Pseudogaudryininae. The type species is F. sirhanensis.

Other research

  • Cowen et al. (2025) study the geochemistry of dental tissue of Devonian fish fossils from Svalbard (Norway) and Cretaceous lungfish and plesiosaur fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.

Paleoclimate

  • Evidence indicating that abrupt climate changes during the Last Glacial Period increased pyrogenic methane emissions and global wildfire extent is presented by Riddell-Young et al. (2025).

References

  1. Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. Kaminski, M. A.; Korin, A. (2025). "Flabellogaudryina n.gen, a new agglutinated foraminiferal genus from the Eocene of Saudi Arabia". Micropaleontology. 71 (1): 93–100. doi:10.47894/mpal.71.1.04.
  3. Cowen, M. B.; de Rafélis, M.; Ségalen, L.; Kear, B. P.; Dumont, M.; Žigaitė, Ž. (2025). "Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains". PeerJ. 13. e18763. doi:10.7717/peerj.18763.
  4. Riddell-Young, B.; Lee, J. E.; Brook, E. J.; Schmitt, J.; Fischer, H.; Bauska, T. K.; Menking, J. A.; Iseli, R.; Clark, J. R. (2025). "Abrupt changes in biomass burning during the last glacial period". Nature. 637 (8044): 91–96. doi:10.1038/s41586-024-08363-3.
Category: