|
<blockquote>'''Brokard's theorem'''. The points ''A'', ''B'', ''C'', and ''D'' lie in this order on a circle <math>\omega</math> with center ''O'. Lines ''AC'' and ''BD'' intersect at ''P'', ''AB'' and ''DC'' intersect at ''Q'', and ''AD'' and ''BC'' intersect at ''R''. Then ''O'' is the orthocenter of <math>\triangle PQR</math>. Furthermore, ''QR'' is the ] of ''P'', ''PQ'' is the polar of ''R'', and ''PR'' is the polar of ''Q'' with respect to <math>\omega</math>.<ref></ref>Heuristic ID Team (2021), ''HEURISTIC: For Mathematical Olympiad Approach 2nd Edition'', p. 99. (in Indonesian)</blockquote> |
|
<blockquote>'''Brokard's theorem'''. The points ''A'', ''B'', ''C'', and ''D'' lie in this order on a circle <math>\omega</math> with center ''O'. Lines ''AC'' and ''BD'' intersect at ''P'', ''AB'' and ''DC'' intersect at ''Q'', and ''AD'' and ''BC'' intersect at ''R''. Then ''O'' is the orthocenter of <math>\triangle PQR</math>. Furthermore, ''QR'' is the ] of ''P'', ''PQ'' is the polar of ''R'', and ''PR'' is the polar of ''Q'' with respect to <math>\omega</math>.<ref>Heuristic ID Team (2021), ''HEURISTIC: For Mathematical Olympiad Approach 2nd Edition'', p. 99. (in Indonesian)</ref></blockquote> |