Misplaced Pages

Kerr metric: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 18:54, 15 May 2005 editDiderot (talk | contribs)6,750 editsm References← Previous edit Revision as of 03:36, 27 May 2005 edit undoHillman (talk | contribs)11,881 edits ReferencesNext edit →
Line 18: Line 18:


==References== ==References==

* Ronald Adler, Maurice Bazin, Menahem Schiffer, ''Introduction to General Relativity (Second Edition)'', (1975) McGraw-Hill New York, ISBN 0-07-000423-4 ''See chapter 7''.
* {{Book reference | Author=Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius & Herlt, Eduard | Title=Exact Solutions of Einstein's Field Equations | Publisher=Cambridge: Cambridge University Press | Year=2003 | ID=ISBN 0-521-46136-7}}

* {{Book reference | Author=O'Neill, Barrett| Title=The Geometry of Kerr Black Holes| Publisher=Wellesley, MA: A. K. Peters| Year =1995 | ID=ISBN 1-568-81019-9 }}

* {{Book reference | Author=Adler, Ronald; Bazin, Maurice & Schiffer, Menahem| Title=Introduction to General Relativity (Second Edition)| Publisher=New York: McGraw-Hill| Year =1975 | ID=ISBN 0-07-000423-4 }} ''See chapter 7''.





Revision as of 03:36, 27 May 2005

In physics, the Kerr metric describes the geometry of spacetime around a rotating black hole. (The Schwarzschild metric is used to describe nonrotating black holes.) Discovered in 1963 by Roy Kerr, it is an exact solution to the Einstein field equations.

The Boyer-Lindquist form of the line element is given by

d s 2 = ρ 2 ( d r 2 Δ + d θ 2 ) + ( r 2 + a 2 ) sin 2 θ d ϕ 2 d t 2 + 2 m r ρ 2 ( a sin 2 θ d ϕ d t ) 2 {\displaystyle ds^{2}=\rho ^{2}({\frac {dr^{2}}{\Delta }}+d\theta ^{2})+(r^{2}+a^{2})\sin ^{2}\theta d\phi ^{2}-dt^{2}+{\frac {2mr}{\rho ^{2}}}(a\sin ^{2}\theta d\phi -dt)^{2}}

where

ρ=r + acosθ

and

Δ=r - 2mr + a.

Here m is the mass of the black hole, and a is is a parameter describing the rotation of the black hole, related to the angular momentum J by : a = J / m {\displaystyle a=J/m} . Note that r does not agree with the radial coordinate of the Schwarzschild solution, except asymptotically.

The Kerr metric is not the most general cylindrically symmetric metric. It is the case for certain vanishing multipole moments.

References

  • . ISBN 0-521-46136-7. {{cite book}}: Missing or empty |title= (help); Unknown parameter |Author= ignored (|author= suggested) (help); Unknown parameter |Publisher= ignored (|publisher= suggested) (help); Unknown parameter |Title= ignored (|title= suggested) (help); Unknown parameter |Year= ignored (|year= suggested) (help)
  • . ISBN 1-568-81019-9. {{cite book}}: Missing or empty |title= (help); Unknown parameter |Author= ignored (|author= suggested) (help); Unknown parameter |Publisher= ignored (|publisher= suggested) (help); Unknown parameter |Title= ignored (|title= suggested) (help); Unknown parameter |Year= ignored (|year= suggested) (help)
  • . ISBN 0-07-000423-4. {{cite book}}: Missing or empty |title= (help); Unknown parameter |Author= ignored (|author= suggested) (help); Unknown parameter |Publisher= ignored (|publisher= suggested) (help); Unknown parameter |Title= ignored (|title= suggested) (help); Unknown parameter |Year= ignored (|year= suggested) (help) See chapter 7.
    Stub icon

    This physics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: