Misplaced Pages

Van der Grinten projection: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 19:35, 24 November 2007 editMdf (talk | contribs)1,309 editsm link to online version of PP 1395← Previous edit Revision as of 21:03, 24 November 2007 edit undoMdf (talk | contribs)1,309 editsm removed scale factorNext edit →
Line 6: Line 6:
The geometric construction given by van der Grinten can be written algebraically<ref>, ] Professional Paper 1395, John P. Snyder, 1987, pp.239-242</ref>: The geometric construction given by van der Grinten can be written algebraically<ref>, ] Professional Paper 1395, John P. Snyder, 1987, pp.239-242</ref>:


:<math>x = \frac {\pm \pi R\left(A\left(G - P^2\right) + \sqrt {A^2 \left(G - P^2\right) - \left(P^2 + A^2\right)\left(G^2 - P^2\right)}\right)} {P^2 + A^2}\,</math> :<math>x = \frac {\pm \pi \left(A\left(G - P^2\right) + \sqrt {A^2 \left(G - P^2\right) - \left(P^2 + A^2\right)\left(G^2 - P^2\right)}\right)} {P^2 + A^2}\,</math>


:<math>y = \frac {\pm \pi R\left(P Q - A \sqrt{\left(A^2 + 1\right)\left(P^2 + A^2\right) - Q^2} \right)} {P^2 + A^2}</math> :<math>y = \frac {\pm \pi \left(P Q - A \sqrt{\left(A^2 + 1\right)\left(P^2 + A^2\right) - Q^2} \right)} {P^2 + A^2}</math>


where <math>x\,</math> takes the sign of <math>\lambda - \lambda_0\,</math>, <math>y\,</math> takes the sign of <math>\phi\,</math> and where <math>x\,</math> takes the sign of <math>\lambda - \lambda_0\,</math>, <math>y\,</math> takes the sign of <math>\phi\,</math> and
Line 20: Line 20:
Should it occur that <math>\phi = 0\,</math>, then Should it occur that <math>\phi = 0\,</math>, then


:<math>x = R\left(\lambda - \lambda_0\right)\,</math> :<math>x = \left(\lambda - \lambda_0\right)\,</math>
:<math>y = 0\,</math> :<math>y = 0\,</math>


Line 26: Line 26:


:<math>x = 0\,</math> :<math>x = 0\,</math>
:<math>y = \pm \pi R \tan {\theta / 2 }</math> :<math>y = \pm \pi \tan {\theta / 2 }</math>


In all cases, <math>\phi\,</math> is the latitude, <math>\lambda\,</math> is the longitude, <math>\lambda_0\,</math> is the central meridian of the projection and <math>R\,</math> is the scale factor. In all cases, <math>\phi\,</math> is the latitude, <math>\lambda\,</math> is the longitude, and <math>\lambda_0\,</math> is the central meridian of the projection.


==References== ==References==

Revision as of 21:03, 24 November 2007

A van der Grinten projection of the Earth

The van der Grinten projection is neither equal-area nor conformal. It projects the entire Earth into a circle, though the polar regions are subject to extreme distortion. The projection was the first of four proposed by Alphons J. van der Grinten in 1904, and, unlike most projections, is an arbitrary geometric construction on the plane. It was made famous when the National Geographic Society adopted it as their reference map of the world from 1922 until 1988.

The geometric construction given by van der Grinten can be written algebraically:

x = ± π ( A ( G P 2 ) + A 2 ( G P 2 ) ( P 2 + A 2 ) ( G 2 P 2 ) ) P 2 + A 2 {\displaystyle x={\frac {\pm \pi \left(A\left(G-P^{2}\right)+{\sqrt {A^{2}\left(G-P^{2}\right)-\left(P^{2}+A^{2}\right)\left(G^{2}-P^{2}\right)}}\right)}{P^{2}+A^{2}}}\,}
y = ± π ( P Q A ( A 2 + 1 ) ( P 2 + A 2 ) Q 2 ) P 2 + A 2 {\displaystyle y={\frac {\pm \pi \left(PQ-A{\sqrt {\left(A^{2}+1\right)\left(P^{2}+A^{2}\right)-Q^{2}}}\right)}{P^{2}+A^{2}}}}

where x {\displaystyle x\,} takes the sign of λ λ 0 {\displaystyle \lambda -\lambda _{0}\,} , y {\displaystyle y\,} takes the sign of ϕ {\displaystyle \phi \,} and

A = 1 2 | π λ λ 0 λ λ 0 π | {\displaystyle A={\frac {1}{2}}|{\frac {\pi }{\lambda -\lambda _{0}}}-{\frac {\lambda -\lambda _{0}}{\pi }}|}
G = cos θ sin θ + cos θ 1 {\displaystyle G={\frac {\cos \theta }{\sin \theta +\cos \theta -1}}}
P = G ( 2 sin θ 1 ) {\displaystyle P=G\left({\frac {2}{\sin \theta }}-1\right)}
θ = arcsin | 2 ϕ π | {\displaystyle \theta =\arcsin |{\frac {2\phi }{\pi }}|}
Q = A 2 + G {\displaystyle Q=A^{2}+G\,}

Should it occur that ϕ = 0 {\displaystyle \phi =0\,} , then

x = ( λ λ 0 ) {\displaystyle x=\left(\lambda -\lambda _{0}\right)\,}
y = 0 {\displaystyle y=0\,}

Similarly, if λ = λ 0 {\displaystyle \lambda =\lambda _{0}\,} or ϕ = ± π / 2 {\displaystyle \phi =\pm \pi /2\,} , then

x = 0 {\displaystyle x=0\,}
y = ± π tan θ / 2 {\displaystyle y=\pm \pi \tan {\theta /2}}

In all cases, ϕ {\displaystyle \phi \,} is the latitude, λ {\displaystyle \lambda \,} is the longitude, and λ 0 {\displaystyle \lambda _{0}\,} is the central meridian of the projection.

References

  1. Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp.258-262, ISBN 0-226-76747-7.
  2. Map Projections - A Working Manual, USGS Professional Paper 1395, John P. Snyder, 1987, pp.239-242
Stub icon

This cartography or mapping term article is a stub. You can help Misplaced Pages by expanding it.

Categories: