Revision as of 15:13, 3 December 2003 editDen fjättrade ankan~enwiki (talk | contribs)6,322 editsNo edit summary← Previous edit | Revision as of 07:28, 6 December 2003 edit undoAstronautics~enwiki (talk | contribs)8,754 editsm decapitalized Continuum hypothesis to conform with that articleNext edit → | ||
Line 11: | Line 11: | ||
In ] the family moved to Germany and he continued his education in German schools, earning his doctorate from the University of Berlin in ]. | In ] the family moved to Germany and he continued his education in German schools, earning his doctorate from the University of Berlin in ]. | ||
Cantor recognized that ] can have different sizes, distinguished between ] and ] ] and proved that the set of all ] '''Q''' is countable while the set of all ] '''R''' is uncountable and hence strictly bigger. The proof uses his celebrated ]. In his later years, he tried in vain to prove the ]. By ], he had discovered several ] in elementary set theory. | Cantor recognized that ] can have different sizes, distinguished between ] and ] ] and proved that the set of all ] '''Q''' is countable while the set of all ] '''R''' is uncountable and hence strictly bigger. The proof uses his celebrated ]. In his later years, he tried in vain to prove the ]. By ], he had discovered several ] in elementary set theory. | ||
Throughout the second half of his life he suffered from bouts of ], which severely affected his ability to work and forced him to become hospitalized repeatedly. This recurrent depression would probably be diagnosed as ] today. The discovery of ] led to a ] from which he never recovered. He started to publish about ] and ], and developed his concept of the ] which he equated with ]. He was impoverished during ] and died in a ] in ], ]. | Throughout the second half of his life he suffered from bouts of ], which severely affected his ability to work and forced him to become hospitalized repeatedly. This recurrent depression would probably be diagnosed as ] today. The discovery of ] led to a ] from which he never recovered. He started to publish about ] and ], and developed his concept of the ] which he equated with ]. He was impoverished during ] and died in a ] in ], ]. |
Revision as of 07:28, 6 December 2003
Georg Ferdinand Ludwig Philipp Cantor (March 3, 1845 - January 6, 1918) was a German mathematician who is best known as the creator of modern set theory. He is recognized by mathematicians for having extended set theory to the concept of transfinite numbers, including the cardinal and ordinal number classes.
He was born in Saint Petersburg Russia, the son of a Danish merchant, George Waldemar Cantor, and a Russian musician, Maria Anna Böhm. In 1856 the family moved to Germany and he continued his education in German schools, earning his doctorate from the University of Berlin in 1867.
Cantor recognized that infinite sets can have different sizes, distinguished between countable and uncountable sets and proved that the set of all rational numbers Q is countable while the set of all real numbers R is uncountable and hence strictly bigger. The proof uses his celebrated diagonal argument. In his later years, he tried in vain to prove the continuum hypothesis. By 1897, he had discovered several paradoxes in elementary set theory.
Throughout the second half of his life he suffered from bouts of depression, which severely affected his ability to work and forced him to become hospitalized repeatedly. This recurrent depression would probably be diagnosed as bipolar disorder today. The discovery of Russell's paradox led to a nervous breakdown from which he never recovered. He started to publish about literature and religion, and developed his concept of the Absolute Infinite which he equated with God. He was impoverished during World War I and died in a mental hospital in Halle, Germany.
Cantor's innovative mathematics faced significant resistance during his lifetime. Modern mathematics completely accepts Cantor's work on transfinite sets and recognizes it as a paradigm shift of major importance.
- "No one shall expel us from the Paradise that Cantor has created." David Hilbert
See also: Cantor dust, Cantor set