Revision as of 18:38, 5 May 2009 view sourceSpinningspark (talk | contribs)89,216 editsm Reverted edits by 173.56.140.165 (talk) to last version by Spinningspark← Previous edit |
Revision as of 01:55, 7 May 2009 view source 203.97.42.198 (talk) ←Replaced content with '<blockquote> ;khu <gallery> </gallery> </blockquote>'Tag: blankingNext edit → |
Line 1: |
Line 1: |
|
|
<blockquote> |
|
] |
|
|
|
;khu |
|
|
<gallery> |
|
|
|
|
|
|
</gallery> |
|
'''Morse code''' is a type of ] that transmits ] information using ]. Morse code uses a standardized sequence of short and long elements to represent the ], ] and ]s of a given message. The short and long elements can be formed by ]s, marks, or ]s, in ] and are commonly known as "dots" and "dashes" or "dits" and "dahs". The speed of Morse code is measured in ] (WPM) or characters per minute, while fixed-length data forms of ] transmission are usually measured in ] or ]. |
|
|
|
</blockquote> |
|
|
|
|
Originally created for ]'s electric ] in the early 1840s, Morse code was also extensively used for early ] communication beginning in the 1890s. For the first half of the twentieth century, the majority of high-speed international communication was conducted in Morse code, using telegraph lines, undersea cables, and radio circuits. However, the variable length of the Morse characters made it hard to adapt to automated circuits, so for most electronic communication it has been replaced by machine readable formats, such as ] and ]. |
|
|
|
|
|
The most popular current use of Morse code is by ]s, although it is no longer a requirement for amateur licensing in many countries. In the professional field, ] and ] are usually familiar with Morse code and require a basic understanding. ]s in the field of ], such as ] and ], constantly transmit their identity in Morse code. Morse code is designed to be read by humans without a decoding device, making it useful for sending automated digital data in voice channels. For emergency signaling, Morse code can be sent by way of improvised sources that can be easily "keyed" on and off, making Morse code one of the most versatile methods of ] in existence. |
|
|
|
|
|
==Development and history== |
|
|
], and remains in widespread use today. In a straight key, the signal is "on" when the knob is pressed, and "off" when it is released. Length and timing of the dots and dashes are entirely controlled by the operator.]] |
|
|
Beginning in 1836, ] and ] developed an ], which sent pulses of electrical current to control an electromagnet that was located at the receiving end of the telegraph wire. The technology available at the time made it impossible to print characters in a readable form, so the inventors had to devise an alternate means of communication. In 1837, ] and ] began operating electric telegraphs in England that also had electromagnets in the receivers; however, their systems used needle pointers that rotated to indicate the alphabetic characters being sent. |
|
|
|
|
|
In contrast, Morse's and Vail's initial telegraph, which first went into operation in 1844, made indentations on a paper tape when an electrical current was transmitted. Morse's original telegraph receiver used a mechanical clockwork to move a paper tape. When an electrical current was received, an electromagnet engaged an armature that pushed a stylus onto the moving paper tape, making an indentation on the tape. When the current was interrupted, the electromagnet retracted the stylus, and that portion of the moving tape remained unmarked. |
|
|
|
|
|
The Morse code was developed so that operators could translate the indentations marked on the paper tape into text messages. In his earliest code, Morse had planned to only transmit numerals, and use a dictionary to look up each word according to the number which had been sent. However, the code was soon expanded by ] to include letters and special characters, so it could be used more generally. The shorter marks were called "dots", and the longer ones "dashes", and the letters most commonly used in the ] were assigned the shortest sequences. |
|
|
|
|
|
In the original Morse telegraphs, the receiver's armature made a clicking noise as it moved into and out of position to mark the tape. Operators soon learned to translate the clicks directly into dots and dashes, making it unnecessary to use the paper tape. When Morse code was adapted to radio, the dots and dashes were sent as short and long pulses. It was later found that people become more proficient at receiving Morse code when it is taught as a language that is heard, instead of one read from a page.<ref></ref> To reflect the sound of Morse code, practitioners began to vocalise a dot as "dit", and a dash as "dah". |
|
|
|
|
|
Morse code was an integral part of international aviation. Commercial and military pilots were required to be familiar with it, both for use with early communications systems and identification of navigational beacons which transmitted continuous three letter ID's in Morse code. As late as the 1990s, ]s listed the three letter ID of each airport in Morse and ]s still show the Morse signals for ] and ] used for in flight navigation. |
|
|
|
|
|
Morse code was also used as an international standard for maritime communication until 1999, when it was replaced by the ]. When the ] ceased using Morse code in 1997, the final message transmitted was "Calling all. This is our last cry before our eternal silence." ''See also:'' ] |
|
|
|
|
|
==Modern International Morse Code== |
|
|
Morse code has been in use for more than 160 years — longer than any other electronic encoding system. What is called Morse code today is actually somewhat different from what was originally developed by Vail and Morse. The Modern International Morse code, or ''continental code'', was created by Friedrich Clemens Gerke in 1848 and initially used for telegraphy between Hamburg and Cuxhaven in Germany. After some minor changes, in 1865 it was standardised at the International Telegraphy congress in Paris (1865), and later made the norm by the ] (ITU) as International Morse code. Morse's original code specification, largely limited to use in the United States, became known as ''']''' or "railroad code." American Morse is now very rarely used except in historical re-enactments. |
|
|
|
|
|
===Aviation=== |
|
|
In ], instrument pilots use ] aids. To ensure the stations they are using are serviceable they all emit a short set of identification letters (usually a 2–5 letter version of the station name) in Morse code. Station identification letters are shown on air navigation charts. For example the ] ] based at Manchester Airport is cut down to MCT, and Morse code MCT is broadcast on the radio frequency. If a station is unserviceable then it broadcasts TST (for TEST) and tells pilots that the station is unreliable. |
|
|
|
|
|
===Amateur radio=== |
|
|
] semiautomatic key (also called a "bug"). The paddle, when pressed to the right by the thumb, generates a series of ''dits'', the length and timing of which are controlled by a sliding weight toward the rear of the unit. When pressed to the left by the knuckle of the index finger, the paddle generates a ''dah'', the length of which is controlled by the operator. Multiple ''dahs'' require multiple presses. Left-handed operators use a key built as a mirror image of this one.]] |
|
|
International Morse code today is most popular among ] operators, where it is used as the pattern to key a transmitter on and off in the radio communications mode commonly referred to as "continuous wave" or "CW". The original amateur radio operators used Morse code exclusively, as voice-capable radio transmitters did not become commonly available until around 1920. Until 2003 the ] (ITU) mandated Morse code proficiency as part of the amateur radio licensing procedure worldwide. However, the World Radiocommunication Conference of 2003 (WRC-03) made the Morse code requirement for amateur radio licensing optional.<ref></ref> Many countries subsequently removed the Morse requirement from their licence requirements.<ref></ref> |
|
|
|
|
|
Until 1991, a demonstration of the ability to send and receive Morse code at 5 words per minute (WPM) was required to receive an amateur radio license for use in the United States from the ]. Demonstration of this ability was still required for the privilege to use the ]. Until 2000, proficiency at the 20 WPM level was required to receive the highest level of amateur license (Extra Class); effective April 15, 2000, the FCC reduced the Extra Class requirement to 5 WPM.<ref>{{cite web | title=1998 Biennial Regulatory Review — Amendment of Part 97 of the Commission's Amateur Service Rules. | url=http://www.arrl.org/announce/regulatory/wt98-143ro.pdf | dateformat=mdy | accessdate=December 4 2005 |format=PDF}}</ref> Finally, effective February 23, 2007, the FCC eliminated the Morse code proficiency requirements for all amateur licenses. |
|
|
|
|
|
While voice and data transmissions are limited to specific amateur radio bands under U.S. rules, CW is permitted on all amateur bands—], ], HF, UHF, and VHF, with one notable exception being the ] band in the US. In some countries, certain portions of the amateur radio bands are reserved for transmission of Morse code signals only. Because Morse transmissions employ an ] radio signal, it requires less complex transmission equipment than other forms of radio communication. Morse code also requires less ] than voice communication, typically 100–150 Hz, compared to the roughly 2400 Hz used by ], although at a lower data rate. Morse code is received as a high-pitched audio tone, so transmissions are easier to copy than voice through the noise on congested frequencies, and it can be used in very high noise / low signal environments. The fact that the transmitted energy is concentrated into a very limited bandwidth makes it possible to use narrow receiver filters, which suppress or eliminate interference on nearby frequencies. The narrow signal bandwidth also takes advantage of the natural aural selectivity of the human brain, further enhancing weak signal readability. This efficiency makes CW extremely useful for DX (distance) transmissions, as well as for low-power transmissions (commonly called "]", from the ] for "reduce power"). There are several amateur clubs that require solid high speed copy, the highest of these has a standard of 60 WPM. The ] offers a code proficiency certification program that starts at 10 WPM. |
|
|
|
|
|
The relatively limited speed at which Morse code can be sent led to the development of an extensive number of abbreviations to speed communication. These include ] and ]s, plus a restricted standardized format for typical messages. For example, CQ is broadcast to be interpreted as "seek you" (I'd like to converse with anyone who can hear my signal), YL or XYL (abbreviation for Young Lady, or the wife of the operator, a Married Young Lady) or OM (Old Man) for the operator himself. This use of abbreviations for common terms permits conversation even when the operators speak different languages. |
|
|
|
|
|
Although the traditional ] (straight key) is still used by many amateurs, the use of mechanical semi-automatic ]s (known as "bugs") and of fully-automatic electronic ]s is prevalent today. ] is also frequently employed to produce and decode Morse code radio signals. |
|
|
|
|
|
===Speed records=== |
|
|
], but pressing the right paddle generates a series of ''dahs'', and squeezing the paddles produces dit-dah-dit-dah sequence. The actions are reversed for left-handed operators.]] |
|
|
Operators skilled in Morse code can often understand ("copy") code in their heads at rates in excess of 40 WPM. International contests in code copying are still occasionally held. In July 1939 at a contest in ] in the ] Ted R. McElroy set a still-standing record for Morse copying, 75.2 WPM.<ref>{{cite web| url=http://www.qsl.net/n9bor/n0hff.htm| title=The Art & Skill of Radio Telegraphy| accessdate=2006-04-21| date=April 20, 2002}}</ref> In his online book on high speed sending, William Pierpont N0HFF notes some operators may have passed 100 WPM. By this time they are "hearing" phrases and sentences rather than words. The fastest speed ever sent by a straight key was achieved in 1942 by Harry Turner W9YZE (d. 1992) who reached 35 WPM in a demonstration at a U.S. Army base. |
|
|
|
|
|
In a special RufzXP competition at the IARU High Speed Telegraphy World Championships seven competitors attempted to crack speed 1000 cpm. Under the supervision of official IARU RufzXP referees Mathias Kolpe (DL4MM) and Tomáš Mikeska (OK2BFN) and other spectators, Goran Hajoševic (YT7AW) and Fabian Kurz (DJ1YFK) failed to copy 49 out of 50 callsigns at CW speed 1000 cpm (200 wpm).<ref>{{cite web| url=http://www.telegraph-office.com| title=The Telegraph Office| accessdate=2006-04-21}}</ref> |
|
|
|
|
|
===Other uses=== |
|
|
] |
|
|
As of 2009 commercial radiotelegraph licenses are still being issued in the United States by the Federal Communications Commission. Designed for shipboard and coast station operators, they are awarded to applicants who pass written examinations on advanced radio theory and show 20 WPM code proficiency . However, since 1999 the use of satellite and very high frequency maritime communications systems (]) have essentially made them obsolete. |
|
|
|
|
|
Radio navigation aids such as ]s and ]s for aeronautical use broadcast identifying information in the form of Morse Code, though many VOR stations now also provide voice identification.<ref>{{cite web|url=http://www.faa.gov/airports_airtraffic/air_traffic/publications/ATpubs/AIM/Chap1/aim0101.html|title=Aeronautical Information Manual (AIM)|accessdate=2007-12-10}}</ref> |
|
|
|
|
|
Military ships, including those of the ], have long used ]s to exchange messages in Morse code. Modern use continues, in part, as a way to communicate while maintaining ]. |
|
|
|
|
|
===Applications for the general public=== |
|
|
|
|
|
] |
|
|
|
|
|
An important application is signalling for help through ], "'''· · · — — — · · ·'''". This can be sent many ways: keying a radio on and off, flashing a mirror, toggling a flashlight and similar methods. |
|
|
|
|
|
===Morse code as an assistive technology=== |
|
|
Morse code has been employed as an ], helping people with a variety of ] to communicate. Morse can be sent by persons with severe motion disabilities, as long as they have some minimal motor control. In some cases this means alternately blowing into and sucking on a plastic tube ("puff and sip" interface). People with severe motion disabilities in addition to sensory disabilities (e.g. people who are also deaf or blind) can receive Morse through a skin buzzer. |
|
|
|
|
|
In one case reported in the radio amateur magazine '']'', an old shipboard radio operator who had a ] and lost the ability to speak or write was able to communicate with his physician (a radio amateur) by blinking his eyes in Morse. Another example occurred in 1966 when ] ], brought on television by his North Vietnamese captors, Morse-blinked the word TORTURE. |
|
|
|
|
|
==Representation and timing== |
|
|
|
|
|
International Morse code is composed of five elements: |
|
|
|
|
|
# short mark, dot or 'dit' (·) — one unit long |
|
|
# longer mark, dash or 'dah' (–) — three units long |
|
|
# intra-character gap (between the dots and dashes within a character) — one unit long |
|
|
# short gap (between letters) — three units long |
|
|
# medium gap (between words) — seven units long<ref>{{citation | title=International Morse Code |publisher = ITU-R M. 1677 | url = http://www.godfreydykes.info/international%20morse%20code.pdf | date=2004 | accessdate=2008-01-02}}</ref> |
|
|
|
|
|
Morse code can be transmitted in a number of ways: originally as electrical pulses along a ] wire, but also as an audio tone, a radio signal with short and long tones, or as a mechanical or visual signal (e.g. a flashing light) using devices like an ] or a ]. <!-- How? In situations in which the pulse can only be the same length (such as when tapping on wood or on the wall of a prison cell), a slightly longer pause between beats can be used in place of a long pulse ("dah").--> |
|
|
|
|
|
Morse code is transmitted using just two states (on and off) so it was an early form of a ] code. Strictly speaking it is not ], as there are five fundamental elements (see ]). However, this does not mean Morse code cannot be represented as a binary code. In an abstract sense, this is the function that telegraph operators perform when transmitting messages. Working from the above definitions and further defining a 'unit' as a ], we can visualize any Morse code sequence as a combination of the following five elements: |
|
|
|
|
|
# short mark, dot or 'dit' (·) — 1 |
|
|
# longer mark, dash or 'dah' (–) — 111 |
|
|
# intra-character gap (between the dots and dashes within a character) — 0 |
|
|
# short gap (between letters) — 000 |
|
|
# medium gap (between words) — 0000000 |
|
|
|
|
|
Note that this method works only under the assumption that dits and dahs are always separated by gaps, and that gaps are always separated by dits and dahs. |
|
|
|
|
|
Morse messages are generally transmitted by a hand-operated device such as a ], so there are variations introduced by the skill of the sender and receiver — more experienced operators can send and receive at faster speeds. In addition, individual operators differ slightly, for example using slightly longer or shorter dashes or gaps, perhaps only for particular characters. This is called their "fist", and receivers can recognize specific individuals by it alone. |
|
|
|
|
|
The speed of Morse code is measured in ] or ], according to the '''Paris standard''' which defines the speed of Morse transmission as the timing needed to send the word "Paris" a given number of times per minute. The word Paris is used because it is representative for a typical text in the English language, and the choice was influenced by the fact that the decision was taken at the International Telegraph Conference in Paris 1865.{{Fact|date=January 2009}} |
|
|
|
|
|
Today the length of the reference word is 50 units (including 7 units of word spacing). At the Paris Conference the standard word spacing was specified to be only 5 units,{{Fact|date=January 2009}} making the total length of the reference word only 48 units, which may be seen in older literature. |
|
|
|
|
|
The 40 % difference of the two word spacing lengths does have an impact on the evaluation of the results of receiving speed competitions performed at various occasions. X WPM at 5 units word spacing is more difficult to copy than the same text sent at the same nominal speed with 7 units word spacing. |
|
|
|
|
|
Incidentally the word "Morse" is also 50 units. |
|
|
|
|
|
The time for one unit can be computed by the formula: |
|
|
|
|
|
:''T'' = 1200 / ''W'' |
|
|
|
|
|
or |
|
|
|
|
|
:''T'' = 6000 / ''C'' |
|
|
|
|
|
Where: ''T'' is the unit time in milliseconds, ''W'' is the speed in ], and ''C'' is the speed in ]. |
|
|
|
|
|
Below is an illustration of timing conventions. The phrase "MORSE CODE", in Morse code format, would normally be written something like this, where <tt>-</tt> represents dahs and <tt>·</tt> represents dits: |
|
|
|
|
|
-- --- ·-· ··· · -·-· --- -·· · |
|
|
M O R S E C O D E |
|
|
|
|
|
Next is the exact conventional timing for this phrase, with <tt>=</tt> representing "signal on", and <tt>.</tt> representing "signal off", each for the time length of exactly one dit: |
|
|
|
|
|
1 2 3 4 5 6 7 8 |
|
|
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789 |
|
|
|
|
|
M------ O---------- R------ S---- E C---------- O---------- D------ E |
|
|
===.===...===.===.===...=.===.=...=.=.=...=.......===.=.===.=...===.===.===...===.=.=...= |
|
|
^ ^ ^ ^ ^ |
|
|
| dah dit | | |
|
|
symbol space letter space word space |
|
|
|
|
|
|
|
|
Morse code is often spoken or written with "dah" for dashes, "dit" for dots located at the end of a character, and "di" for dots located at the beginning or internally within the character. Thus, the following Morse code sequence: |
|
|
|
|
|
M O R S E C O D E |
|
|
-- --- ·-· ··· · (space) -·-· --- -·· · |
|
|
|
|
|
is verbally: |
|
|
|
|
|
''Dah-dah dah-dah-dah di-dah-dit di-di-dit dit, Dah-di-dah-dit dah-dah-dah dah-di-dit dit''. |
|
|
|
|
|
Note that there is little point in learning to read ''written'' Morse as above; rather, the ''sounds'' of all of the letters and symbols need to be learnt, for both sending and receiving. |
|
|
|
|
|
== Learning Morse Code == |
|
|
People learning Morse code using the '''Farnsworth method''', named for Donald R. "Russ" Farnsworth, also known by his ], W6TTB, are taught to send and receive letters and other symbols at their full target speed, that is with normal relative timing of the dots, dashes and spaces within each symbol for that speed. However, initially exaggerated spaces between symbols and words are used, to give "thinking time" to make the sound "shape" of the letters and symbols easier to learn. The spacing can then be reduced with practice and familiarity. Another popular teaching method is the '''Koch method''', named after German psychologist Ludwig Koch, which uses the full target speed from the outset, but begins with just two characters. Once strings containing those two characters can be copied with 90% accuracy, an additional character is added, and so on until the full character set is mastered. |
|
|
|
|
|
==Letters, numbers, punctuation== |
|
|
{{Inline audio|section}} |
|
|
{| class="wikitable" |
|
|
! Character || Code || Character || Code || Character || Code |
|
|
! Character || Code || Character || Code || Character || Code |
|
|
|- |
|
|
| {{Audio-nohelp|A morse code.ogg|A}} || '''· —''' |
|
|
| {{Audio-nohelp|J morse code.ogg|J}} || '''· — — —''' |
|
|
| {{Audio-nohelp|S morse code.ogg|S}} || '''· · ·''' |
|
|
| {{Audio-nohelp|1 number morse code.ogg|1}} || '''· — — — —''' |
|
|
| ] || '''· — · — · —''' |
|
|
| ] || '''— — — · · ·''' |
|
|
|- |
|
|
| {{Audio-nohelp|B morse code.ogg|B}} || '''— · · ·''' |
|
|
| {{Audio-nohelp|K morse code.ogg|K}} || '''— · —''' |
|
|
| {{Audio-nohelp|T morse code.ogg|T}} || '''—''' |
|
|
| {{Audio-nohelp|2 number morse code.ogg|2}} || '''· · — — —''' |
|
|
| ] || '''— — · · — —''' |
|
|
| ] || '''— · — · — ·''' |
|
|
|- |
|
|
| {{Audio-nohelp|C morse code.ogg|C}} || '''— · — ·''' |
|
|
| {{Audio-nohelp|L morse code.ogg|L}} || '''· — · ·''' |
|
|
| {{Audio-nohelp|U morse code.ogg|U}} || '''· · —''' |
|
|
| {{Audio-nohelp|3 number morse code.ogg|3}} || '''· · · — —''' |
|
|
| ] || '''· · — — · ·''' |
|
|
| ] || '''— · · · —''' |
|
|
|- |
|
|
| {{Audio-nohelp|D morse code.ogg|D}} || '''— · ·''' |
|
|
| {{Audio-nohelp|M morse code.ogg|M}} || '''— —''' |
|
|
| {{Audio-nohelp|V morse code.ogg|V}} || '''· · · —''' |
|
|
| {{Audio-nohelp|4 number morse code.ogg|4}} || '''· · · · —''' |
|
|
| ] || '''· — — — — ·''' |
|
|
| ] || '''· — · — ·''' |
|
|
|- |
|
|
| {{Audio-nohelp|E morse code.ogg|E}} || '''·''' |
|
|
| {{Audio-nohelp|N morse code.ogg|N}} || '''— ·''' |
|
|
| {{Audio-nohelp|W morse code.ogg|W}} || '''· — —''' |
|
|
| {{Audio-nohelp|5 number morse code.ogg|5}} || '''· · · · ·''' |
|
|
| ] || '''— · — · — —''' |
|
|
| ], ] || '''— · · · · —''' |
|
|
|- |
|
|
| {{Audio-nohelp|F morse code.ogg|F}} || '''· · — ·''' |
|
|
| {{Audio-nohelp|O morse code.ogg|O}} || '''— — —''' |
|
|
| {{Audio-nohelp|X morse code.ogg|X}} || '''— · · —''' |
|
|
| {{Audio-nohelp|6 number morse code.ogg|6}} || '''— · · · ·''' |
|
|
| ] , ] || '''— · · — ·''' |
|
|
| ] || '''· · — — · —''' |
|
|
|- |
|
|
| {{Audio-nohelp|G morse code.ogg|G}} || '''— — ·''' |
|
|
| {{Audio-nohelp|P morse code.ogg|P}} || '''· — — ·''' |
|
|
| {{Audio-nohelp|Y morse code.ogg|Y}} || '''— · — —''' |
|
|
| {{Audio-nohelp|7 number morse code.ogg|7}} || '''— — · · ·''' |
|
|
| ] open || '''— · — — ·''' |
|
|
| ] || '''· — · · — ·''' |
|
|
|- |
|
|
| {{Audio-nohelp|H morse code.ogg|H}} || '''· · · ·''' |
|
|
| {{Audio-nohelp|Q morse code.ogg|Q}} || '''— — · —''' |
|
|
| {{Audio-nohelp|Z morse code.ogg|Z}} || '''— — · ·''' |
|
|
| {{Audio-nohelp|8 number morse code.ogg|8}} || '''— — — · ·''' |
|
|
| Parenthesis closed || '''— · — — · —''' |
|
|
| ] || '''· · · — · · —''' |
|
|
|- |
|
|
| {{Audio-nohelp|I morse code.ogg|I}} || '''· ·''' |
|
|
| {{Audio-nohelp|R morse code.ogg|R}} || '''· — ·''' |
|
|
| {{Audio-nohelp|0 number morse code.ogg|0}} || '''— — — — —''' |
|
|
| {{Audio-nohelp|9 number morse code.ogg|9}} || '''— — — — ·''' |
|
|
| ] , Wait || '''· — · · ·''' |
|
|
| ] || '''· — — · — ·''' |
|
|
|} |
|
|
|
|
|
There is no standard representation for the exclamation mark (!), although the <span style="text-decoration: overline">KW</span> ] ('''— · — · — —''') was proposed in the 1980s by the ] Company (a vendor of assembly kits for amateur radio equipment). While Morse code translation software prefers this version, on-air use is not yet universal as some amateur radio operators in Canada and the USA continue to prefer the older <span style="text-decoration: overline">MN</span> digraph ('''— — — ·''') carried over from American landline telegraphy code. |
|
|
|
|
|
The &, $ and the _ signs are not defined inside the ITU recommendation on Morse code. The $ sign code was represented in the ], a huge collection of abbreviations used on land line telegraphy, as <span style="text-decoration: overline">SX</span>. The representation of the &-sign given above is also the Morse prosign for '''wait'''. |
|
|
|
|
|
On May 24, 2004—the 160th anniversary of the first public Morse telegraph transmission—the Radiocommunication Bureau of the International Telecommunication Union (]) formally added the @ ("]" or "commat") character to the official Morse character set, using the sequence denoted by the <span style="text-decoration: overline">AC</span> digraph ('''· — — · — ·'''). This sequence was reportedly chosen to represent "A C" or a letter "a" inside a swirl represented by a "C".<ref>{{cite web | title=International Morse Code Gets a New ITU Home, New Character | url=http://www.arrl.org/news/stories/2003/12/10/2/?nc=1 | dateformat=mdy | accessdate=February 27 2007 }}</ref> The new character facilitates sending ] addresses by Morse code and is notable since it is the first official addition to the Morse set of characters since ]. |
|
|
|
|
|
===Prosigns=== |
|
|
{{main|Prosigns for Morse code}} |
|
|
{| class="wikitable" |
|
|
! Character(s) || Code || Character(s) || Code || Character(s) || Code |
|
|
|- |
|
|
|Wait || '''· - · · · ''' |
|
|
|Error || '''· · · · · · · · ''' |
|
|
|Understood || '''· · · - · ''' |
|
|
|- |
|
|
|Invitation to transmit || '''- · -''' |
|
|
|End of work || '''· · · - · -''' |
|
|
|Starting Signal || '''- · - · -''' |
|
|
|} |
|
|
Defined in the ITU recommendation. |
|
|
|
|
|
===Non-English extensions to the Morse code=== |
|
|
{| class="wikitable" |
|
|
! Char. || Code || Char. || Code || Char. || Code |
|
|
|- |
|
|
|] (also ] and ]) || '''· — · —''' |
|
|
|] (also ])|| '''· — · · –''' |
|
|
|] (also ])|| '''— — · — —''' |
|
|
|- |
|
|
|] (also ]) || '''· — — · —''' |
|
|
|] (also ] and ]) || '''· · — · ·''' |
|
|
|] (also ] and ]) || '''— — — ·''' |
|
|
|- |
|
|
|] (also ] and ]) || '''— · — · ·''' |
|
|
|] || '''— — · — ·''' |
|
|
|] || '''· · · — ·''' |
|
|
|- |
|
|
|] (also ]) ||'''— — — —''' |
|
|
|] || '''— · — — ·''' (Obsolete)<br/>'''— — — — ''' (New) |
|
|
|] ("Thorn") || '''· — — · ·''' |
|
|
|- |
|
|
|] ("Eth") || '''· · — — ·''' |
|
|
|] || '''· — — — ·''' |
|
|
|] (also ]) || '''· · — —''' |
|
|
|- |
|
|
|] || '''· · · — · · ·''' |
|
|
|] || '''— — · · — ·''' |
|
|
|] || '''— — · · —''' |
|
|
|} |
|
|
|
|
|
===Non-Latin extensions to Morse code=== |
|
|
See ]. For ], ] is used to map ] to four-digit codes and send these digits out using standard Morse code. For ], ] maps the ] through to the same codes in ] and back to their equivalents in the ]. |
|
|
|
|
|
==Alternative display of more common characters for the international code== |
|
|
Some methods of teaching or learning morse code use the ] table below. |
|
|
|
|
|
[[Image:Morse code tree3.png|800px|center|thumb|A graphical representation of the dichotomic search table: the user branches left at every dot and right at every dash until the character is finished. |
|
|
{| style="font-family: monospace; text-align: center;" |
|
|
|- |
|
|
| rowspan="8" style="background-color: #f9f9f9; width: 100px;" | T — |
|
|
| rowspan="4" style="background-color: #f9f9f9; width: 100px;" | M — — |
|
|
| rowspan="2" style="background-color: #f9f9f9; width: 100px;" | O — — — |
|
|
| style="background-color: #f9f9f9; width: 100px;" | CH — — — — |
|
|
|- |
|
|
| style="background-color: #f1f1f1;" | Ö — — — · |
|
|
|- |
|
|
| rowspan="2" style="background-color: #f1f1f1;" | G — — · |
|
|
| style="background-color: #f9f9f9;" | Q — — · — |
|
|
|- |
|
|
| style="background-color: #f1f1f1;" | Z — — · · |
|
|
|- |
|
|
| rowspan="4" style="background-color: #f1f1f1;" | N — · |
|
|
| rowspan="2" style="background-color: #f9f9f9;" | K — · — |
|
|
| style="background-color: #f9f9f9;" | Y — · — — |
|
|
|- |
|
|
| style="background-color: #f1f1f1;" | C — · — · |
|
|
|- |
|
|
| rowspan="2" style="background-color: #f1f1f1;" | D — · · |
|
|
| style="background-color: #f9f9f9;" | X — · · — |
|
|
|- |
|
|
| style="background-color: #f1f1f1;" | B — · · · |
|
|
<!-- ******************************** --> |
|
|
|- |
|
|
| rowspan="8" style="background-color: #f1f1f1;" | E · |
|
|
| rowspan="4" style="background-color: #f9f9f9;" | A · — |
|
|
| rowspan="2" style="background-color: #f9f9f9;" | W · — — |
|
|
| style="background-color: #f9f9f9;" | J · — — — |
|
|
|- |
|
|
| style="background-color: #f1f1f1;" | P · — — · |
|
|
|- |
|
|
| rowspan="2" style="background-color: #f1f1f1;" | R · — · |
|
|
| style="background-color: #f9f9f9;" | Ä · — · — |
|
|
|- |
|
|
| style="background-color: #f1f1f1;" | L · — · · |
|
|
|- |
|
|
| rowspan="4" style="background-color: #f1f1f1;" | I · · |
|
|
| rowspan="2" style="background-color: #f9f9f9;" | U · · — |
|
|
| style="background-color: #f9f9f9;" | Ü · · — — |
|
|
|- |
|
|
| style="background-color: #f1f1f1;" | F · · — · |
|
|
|- |
|
|
| rowspan="2" style="background-color: #f1f1f1;" | S · · · |
|
|
| style="background-color: #f9f9f9;" | V · · · — |
|
|
|- |
|
|
| style="background-color: #f1f1f1;" | H · · · · |
|
|
|}]] |
|
|
|
|
|
==Media== |
|
|
{{Listen|filename=Misplaced Pages-Morse.ogg|title=A sample Morse Code transmission|description=The text "Welcome to Misplaced Pages, the 💕 that anyone can edit." sent as Morse Code at 13 WPM.|format=]}} |
|
|
|
|
|
== See also == |
|
|
*] |
|
|
*] |
|
|
*] |
|
|
*] |
|
|
*] |
|
|
*] |
|
|
*] |
|
|
*] |
|
|
*] |
|
|
*] |
|
|
|
|
|
== References== |
|
|
{{Reflist|2}} |
|
|
|
|
|
==External links== |
|
|
{{commons|Morse code|Morse code}} |
|
|
<!--===========================({{NoMoreLinks}})=============================== |
|
|
| PLEASE BE CAUTIOUS IN ADDING MORE LINKS TO THIS ARTICLE. WIKIPEDIA IS | |
|
|
| NOT A COLLECTION OF LINKS. | |
|
|
===========================({{NoMoreLinks}})===============================--> |
|
|
* {{dmoz|Recreation/Radio/Amateur/Morse_Code/}} |
|
|
|
|
|
{{Morse code}} |
|
|
|
|
|
{{writing systems}} |
|
|
|
|
|
{{character encoding}} |
|
|
|
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
|
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|
|
] |
|