Misplaced Pages

Burglar alarm control panel: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 01:51, 11 December 2005 edit24.64.112.236 (talk)No edit summary← Previous edit Revision as of 01:57, 11 December 2005 edit undo24.64.112.236 (talk)No edit summaryNext edit →
Line 1: Line 1:
A '''burglar alarm control panel''' is a panel that is used to control a ]. A '''burglar alarm control panel''' is a panel that is used to control a ].


The simplest type of burglar alarm control consists of one relay. In this type, the sensor circuit (called the ''loop'' in industrial terminology) holds a relay energized. Since the path The simplest type of burglar alarm control consists of one relay. In this type, the
sensor circuit (called the ''loop'' in industrial terminology) holds a relay energized.
for the loop goes through a set of contacts which are normally open (when the relay is restored Since the path for the loop goes through a set of contacts which are normally open (when
they are open, when the relay is energized they are closed), when the loop opens, even momentarily, the relay is restored they are open, when the relay is energized they are closed), when the
the relay will drop out and stay that way. A second set of contacts on the relay, normally closed loop opens, even momentarily, the relay will drop out and stay that way. A second set of
(when the relay is restored they are closed, when the relay is energized they are open) is used to contacts on the relay, normally closed (when the relay is restored they are closed, when
the relay is energized they are open) is used to operate the annunciator, usually a bell.
operate the annunciator, usually a bell. The system is disarmed by a key operated shunt which
The system is disarmed by a key operated shunt which forces the relay to energize, and is
forces the relay to energize, and is armed by closing all traps and then by opening the key operated armed by closing all traps and then by opening the key operated shunt. While burglar alarm
shunt. While burglar alarm controls are now very elaborate, the single-relay control incorporates controls are now very elaborate, the single-relay control incorporates all the functionality
all the functionality of any control. These controls and a closely related dual-relay design are of any control. These controls and a closely related dual-relay design are still widely used
still widely used in stand-alone applications, powered by carbon cells. in stand-alone applications, powered by carbon cells.


In a modern full-functional control there are two, possibly three classifications of loop, and In a modern full-functional control there are two, possibly three classifications of
each classification of loop has two types. The classifications of loop are ''instant'' and loop, and each classification of loop has two types. The classifications of loop are
''delay'', and ''day'' loops. The types of loops are single-circuit and double-circuit. In modern ''instant'' and ''delay'', and ''day'' loops. The types of loops are single-circuit and
controls there may be several instant and/or day loops, but there is usually only one delay loop. Depending on the control, any loop may be single-circuit or double-circuit. double-circuit. In modern controls there may be several instant and/or day loops, but there
is usually only one delay loop. Depending on the control, any loop may be single-circuit
or double-circuit.


The loop types will be discussed first. If we refer to the prototypical single-relay control, The loop types will be discussed first. If we refer to the prototypical single-relay
the current comes from the battery on the positive or ''high'' side, goes through the relay and the control, the current comes from the battery on the positive or ''high'' side, goes through
latching circuit, and then back to the battery on the negative or ''low'' side. Since the loop is the relay and the latching circuit, and then back to the battery on the negative or ''low''
a series circuit (all contacts are closed when the points they are protecting are secured and they side. Since the loop is a series circuit (all contacts are closed when the points they are
are therefore wired into a series circuit) there are two places in the circuit where the loop can protecting are secured and they are therefore wired into a series circuit) there are two
be inserted. The loop can be inserted on the high side, between the battery and the relay, or it places in the circuit where the loop can be inserted. The loop can be inserted on the high
may be inserted on the low side, between the relay and the return. If the loop is taken out to the side, between the battery and the relay, or it may be inserted on the low side, between the
protection only once, then the system is a single-loop system and the other side of the loop is relay and the return. If the loop is taken out to the protection only once, then the system
simply strapped at the control. If both the high side and the low side of the loop are taken out is a single-loop system and the other side of the loop is simply strapped at the control. If
both the high side and the low side of the loop are taken out to the protection, then the
to the protection, then the system is a double-loop system. system is a double-loop system.


The advantage of the single loop system is lower cost and lower complexity. However, the The advantage of the single loop system is lower cost and lower complexity. However,
disadvantage of the single loop system used in our example is that by strapping across the contact, the disadvantage of the single loop system used in our example is that by strapping across
an intruder could open a hole in the protection and thereby defeat the system. The double loop the contact, an intruder could open a hole in the protection and thereby defeat the system.
system, while it is more expensive, does not have this disadvantage, as an attempt to strap across The double loop system, while it is more expensive, does not have this disadvantage, as an
the contact can also strap across the relay, dropping it out and tripping the system. attempt to strap across the contact can also strap across the relay, dropping it out and
tripping the system.


The three classifications of loops as mentioned above are instant, delay, and day circuits. The three classifications of loops as mentioned above are instant, delay, and day
In our example there is only one loop, the instant loop. Not all controls have all classifications circuits. In our example there is only one loop, the instant loop. Not all controls have
all classifications of loops.
The ''instant'' loop is armed as soon as the control is armed, and any loop violation,
of loops.
no matter how transient, will cause an immediate trip.
The ''instant'' loop is armed as soon as the control is armed, and any loop violation, no
The ''delay'' loop, found primarily in controls designed for use with keystations
matter how transient, will cause an immediate trip.
located within the protected area, does not arm as soon as the control is armed. Instead,
The ''delay'' loop, found primarily in controls designed for use with keystations located
there is a delay of nominally 45 seconds before this loop arms, to allow the person arming
within the protected area, does not arm as soon as the control is armed. Instead, there is a
the control time to clear the protected area. Also, when the protected point covered by the
delay of nominally 45 seconds before this loop arms, to allow the person arming the control time
delay loop is opened, the control will not go into alarm for nominally 45 seconds, to allow
to clear the protected area. Also, when the protected point covered by the delay loop is opened,
the person entering time to go to the keystation and disarm the system.
the control will not go into alarm for nominally 45 seconds, to allow the person entering time to
The ''day'' loop is a supervisory circuit for protection such as window bugs, tampers,
go to the keystation and disarm the system.
and window foil. If this loop is violated when the control is armed the result will be that
The ''day'' loop is a supervisory circuit for protection such as window bugs, tampers, and
window foil. If this loop is violated when the control is armed the result will be that the the system will trip and the control goes into alarm. If this loop is violated when the control
is not armed the result will be that a supervisory alarm, or ''trouble'' alarm will be
system will trip and the control goes into alarm. If this loop is violated when the control is
signaled.
not armed the result will be that a supervisory alarm, or ''trouble'' alarm will be signaled.


Modern alarm controls are solid-state devices and do not use relays. The front end for Modern alarm controls are solid-state devices and do not use relays. The front end
the loop is usually a double op-amp comparator sensing a current flow through the protection. for the loop is usually a double op-amp comparator sensing a current flow through the
Because the loop resistance can be up to a couple of hundred ohms at installation, and because protection. Because the loop resistance can be up to a couple of hundred ohms at installation,
resistance transients can occur which are not the result of a loop violation, there is usually and because resistance transients can occur which are not the result of a loop violation, there
a fair bit of tolerance as to the limits of the current flow which are considered normal operation. is usually a fair bit of tolerance as to the limits of the current flow which are considered
The current is set by an end-of-line resistor located at the contact for the point being protected. normal operation. The current is set by an end-of-line resistor located at the contact for the
If the loop is opened, the current will decrease to zero and the control will go into alarm. If point being protected. If the loop is opened, the current will decrease to zero and the control
the contact is strapped across, the current will increase (the control incorporates current will go into alarm. If the contact is strapped across, the current will increase (the control
limiting to prevent damage) and the control will go into alarm. incorporates current limiting to prevent damage) and the control will go into alarm.


Early (c.a. 1980) solid-state alarm controls used shunt switches or momentary closures on Early (c.a. 1980) solid-state alarm controls used shunt switches or momentary closures on

Revision as of 01:57, 11 December 2005

A burglar alarm control panel is a panel that is used to control a burglar alarm.

    The simplest type of burglar alarm control consists of one relay.  In this type, the

sensor circuit (called the loop in industrial terminology) holds a relay energized. Since the path for the loop goes through a set of contacts which are normally open (when the relay is restored they are open, when the relay is energized they are closed), when the loop opens, even momentarily, the relay will drop out and stay that way. A second set of contacts on the relay, normally closed (when the relay is restored they are closed, when the relay is energized they are open) is used to operate the annunciator, usually a bell. The system is disarmed by a key operated shunt which forces the relay to energize, and is armed by closing all traps and then by opening the key operated shunt. While burglar alarm controls are now very elaborate, the single-relay control incorporates all the functionality of any control. These controls and a closely related dual-relay design are still widely used in stand-alone applications, powered by carbon cells.

    In a modern full-functional control there are two, possibly three classifications of

loop, and each classification of loop has two types. The classifications of loop are instant and delay, and day loops. The types of loops are single-circuit and double-circuit. In modern controls there may be several instant and/or day loops, but there is usually only one delay loop. Depending on the control, any loop may be single-circuit or double-circuit.

    The loop types will be discussed first.  If we refer to the prototypical single-relay

control, the current comes from the battery on the positive or high side, goes through the relay and the latching circuit, and then back to the battery on the negative or low side. Since the loop is a series circuit (all contacts are closed when the points they are protecting are secured and they are therefore wired into a series circuit) there are two places in the circuit where the loop can be inserted. The loop can be inserted on the high side, between the battery and the relay, or it may be inserted on the low side, between the relay and the return. If the loop is taken out to the protection only once, then the system is a single-loop system and the other side of the loop is simply strapped at the control. If both the high side and the low side of the loop are taken out to the protection, then the system is a double-loop system.

    The advantage of the single loop system is lower cost and lower complexity.  However,

the disadvantage of the single loop system used in our example is that by strapping across the contact, an intruder could open a hole in the protection and thereby defeat the system. The double loop system, while it is more expensive, does not have this disadvantage, as an attempt to strap across the contact can also strap across the relay, dropping it out and tripping the system.

    The three classifications of loops as mentioned above are instant, delay, and day

circuits. In our example there is only one loop, the instant loop. Not all controls have all classifications of loops.

    The instant loop is armed as soon as the control is armed, and any loop violation,

no matter how transient, will cause an immediate trip.

    The delay loop, found primarily in controls designed for use with keystations

located within the protected area, does not arm as soon as the control is armed. Instead, there is a delay of nominally 45 seconds before this loop arms, to allow the person arming the control time to clear the protected area. Also, when the protected point covered by the delay loop is opened, the control will not go into alarm for nominally 45 seconds, to allow the person entering time to go to the keystation and disarm the system.

    The day loop is a supervisory circuit for protection such as window bugs, tampers,

and window foil. If this loop is violated when the control is armed the result will be that the system will trip and the control goes into alarm. If this loop is violated when the control is not armed the result will be that a supervisory alarm, or trouble alarm will be signaled.

    Modern alarm controls are solid-state devices and do not use relays.  The front end

for the loop is usually a double op-amp comparator sensing a current flow through the protection. Because the loop resistance can be up to a couple of hundred ohms at installation, and because resistance transients can occur which are not the result of a loop violation, there is usually a fair bit of tolerance as to the limits of the current flow which are considered normal operation. The current is set by an end-of-line resistor located at the contact for the point being protected. If the loop is opened, the current will decrease to zero and the control will go into alarm. If the contact is strapped across, the current will increase (the control incorporates current limiting to prevent damage) and the control will go into alarm.

    Early (c.a. 1980) solid-state alarm controls used shunt switches or momentary closures on

the key circuit to arm or disarm the control. Modern controls can use these arming techniques, but more frequently use a keypad which sends operating information to the control. Thus, there is no point in attacking the keypad, as there is no intelligence in the keypad, it is all located in the control. Also, many controls feature integrated transmitters, using wired telephony or optionally, cellular telephony. These controls also monitor the status of the telephone line, and can be programmed to trip if the telephone line fails (or is cut). The controls which utilize cellular telephony report either periodically or at a pseudo-random interval to the central station, and a failure to report will result in a dispatch.

    High-security alarm controls use current and impedance monitoring on the premises, and may

report to the central station via dedicated voice-grade or DC (obsolescent) circuit, or by means of multiple-drop AC grade transmitter (multiplex).

AH 051210




Template:Electro-stub

Category:
Burglar alarm control panel: Difference between revisions Add topic