Misplaced Pages

Redox signaling: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 10:44, 2 December 2009 editRDBrown (talk | contribs)Extended confirmed users15,762 editsm →Cite journal with Misplaced Pages template filling, reflist← Previous edit Revision as of 00:46, 5 April 2010 edit undo74.197.243.96 (talk) HistoryNext edit →
Line 10: Line 10:
Progress in biochemistry has enabled us to improve our understanding of redox signaling in general: usually extracellular environment is more oxidized than intracellular.{{Fact|date=May 2009}} This results in proteins and segments thereof that are exposed to the extracellular environment to form disulfide bridges between cysteine amino acid residues. This way, complementary surfaces have the ability to maintain a covalent bond that stabilizes structure.{{Fact|date=May 2009}} This is important to extracellular proteins, as they are constantly exposed to a variety of proteases, capable of degrading especially easily proteins with loose conformation. Inside the cell, on the contrary, mildly reducing conditions usually predominate.{{Fact|date=May 2009}} Cysteine residues are not involved in the formation of disulfide bonds, unless intracellular redox balance is tilted toward oxidant stress.{{Fact|date=May 2009}} The formation of disulfide bonds is capable of altering both conformation and activity of a number of enzymes, most notably of phosphatases. These enzymes usually restrict the activity of protein kinases (protein phosphorylases). Inactivation of a specific phosphatase by oxidant stress results in prolonged activity for the kinases that it controls in a specific cell type. Prolonged activity of specific kinases, in a cell, means that particular intracellular signal cascades are increasingly activated.{{Fact|date=May 2009}} Such alterations in the intracellular signal cascades, which proceed through successive phosphorylations of particular kinases that operate on a pathway, culminate in phosphorylation of proteins in many cell compartments, such as mitochondria or nucleus. This modification of specific regulatory proteins can result in a number of changes, ranging from ionic signals to wide alterations in patterns of gene expression{{Fact|date=May 2009}}. As a consequence, a cell may change its rate of proliferation, or die, depending on the signal networks that it operates.{{Fact|date=May 2009}} Progress in biochemistry has enabled us to improve our understanding of redox signaling in general: usually extracellular environment is more oxidized than intracellular.{{Fact|date=May 2009}} This results in proteins and segments thereof that are exposed to the extracellular environment to form disulfide bridges between cysteine amino acid residues. This way, complementary surfaces have the ability to maintain a covalent bond that stabilizes structure.{{Fact|date=May 2009}} This is important to extracellular proteins, as they are constantly exposed to a variety of proteases, capable of degrading especially easily proteins with loose conformation. Inside the cell, on the contrary, mildly reducing conditions usually predominate.{{Fact|date=May 2009}} Cysteine residues are not involved in the formation of disulfide bonds, unless intracellular redox balance is tilted toward oxidant stress.{{Fact|date=May 2009}} The formation of disulfide bonds is capable of altering both conformation and activity of a number of enzymes, most notably of phosphatases. These enzymes usually restrict the activity of protein kinases (protein phosphorylases). Inactivation of a specific phosphatase by oxidant stress results in prolonged activity for the kinases that it controls in a specific cell type. Prolonged activity of specific kinases, in a cell, means that particular intracellular signal cascades are increasingly activated.{{Fact|date=May 2009}} Such alterations in the intracellular signal cascades, which proceed through successive phosphorylations of particular kinases that operate on a pathway, culminate in phosphorylation of proteins in many cell compartments, such as mitochondria or nucleus. This modification of specific regulatory proteins can result in a number of changes, ranging from ionic signals to wide alterations in patterns of gene expression{{Fact|date=May 2009}}. As a consequence, a cell may change its rate of proliferation, or die, depending on the signal networks that it operates.{{Fact|date=May 2009}}
An intracellular oscillation of oxidant levels has been previously experimentally linked to maintenance of the rate of cell proliferation.<ref>{{cite journal |author=Irani K, Xia Y, Zweier JL, ''et al.'' |title=Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts |journal=Science |volume=275 |issue=5306 |pages=1649–52 |year=1997 |month=March |pmid=9054359 |url=http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=9054359}}</ref> An intracellular oscillation of oxidant levels has been previously experimentally linked to maintenance of the rate of cell proliferation.<ref>{{cite journal |author=Irani K, Xia Y, Zweier JL, ''et al.'' |title=Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts |journal=Science |volume=275 |issue=5306 |pages=1649–52 |year=1997 |month=March |pmid=9054359 |url=http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=9054359}}</ref>
As an example, when chelating redox-active iron present in the endosomal/lysosomal compartment of cultured epithelial cell line HeLa with the iron chelator desferrioxamine, cell proliferation is inhibited<ref>{{cite journal |author=Doulias PT, Christoforidis S, Brunk UT, Galaris D |title=Endosomal and lysosomal effects of desferrioxamine: protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest |journal=Free Radic. Biol. Med. |volume=35 |issue=7 |pages=719–28 |year=2003 |month=October |pmid=14583336 |url=http://linkinghub.elsevier.com/retrieve/pii/S0891584903003964}}. </ref>. As an example, when chelating redox-active iron present in the endosomal/lysosomal compartment of cultured epithelial cell line HeLa with the iron chelator desferrioxamine, cell proliferation is inhibited<ref>{{cite journal |author=Doulias PT, Christoforidis S, Brunk UT, Galaris D |title=Endosomal and lysosomal effects of desferrioxamine: protection of ] cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest |journal=Free Radic. Biol. Med. |volume=35 |issue=7 |pages=719–28 |year=2003 |month=October |pmid=14583336 |url=http://linkinghub.elsevier.com/retrieve/pii/S0891584903003964}}. </ref>.


==External links== ==External links==

Revision as of 00:46, 5 April 2010

Redox signaling is the process wherein free radicals, reactive oxygen species (ROS), and other electronically-activated species act as messengers in biological systems.

History

The concept of electronically-activated species as messengers in both normal metabolism and in pathogenesis goes back to the 19th century. For example, the biological pigment melanin is a stable free radical. Charles Darwin noted that white blue-eyed cats are usually deaf and that this combination might be related to some defect in neuronal development secondary to the absence of melanin pigment. In a similar manner, it has been known for centuries that radical-generating transition-series metals such as intraocular copper and iron may produce massive vitreous fibrosis (scarring) as they oxidize. We now know that reactive oxygen species likely play a key role in fibrocyte activation.

The "Adrenochrome Hypothesis" of Abram Hoffer and Humphry Osmond for the causation of schizophrenia involves the radical oxidation of the neurotransmitter epinephrine to the psychoactive compound adrenochrome.

The first modern statement of the hypothesis appears to be that of Proctor, who at a subsequent congress of free radical investigators in 1979 generalized it to suggest that " ....active oxygen metabolites act as specific intermediary transmitter substances for a variety of biological processes including inflammation, fibrosis, and possibly, neurotransmission.." and " One explanation for this data is that various active oxygen species ( or such products as hydroperoxides ) may act as specific transmitter substances....". This was formally published in a review in 1984 . The next reference seems to be Bochner and coworkers.

Progress in biochemistry has enabled us to improve our understanding of redox signaling in general: usually extracellular environment is more oxidized than intracellular. This results in proteins and segments thereof that are exposed to the extracellular environment to form disulfide bridges between cysteine amino acid residues. This way, complementary surfaces have the ability to maintain a covalent bond that stabilizes structure. This is important to extracellular proteins, as they are constantly exposed to a variety of proteases, capable of degrading especially easily proteins with loose conformation. Inside the cell, on the contrary, mildly reducing conditions usually predominate. Cysteine residues are not involved in the formation of disulfide bonds, unless intracellular redox balance is tilted toward oxidant stress. The formation of disulfide bonds is capable of altering both conformation and activity of a number of enzymes, most notably of phosphatases. These enzymes usually restrict the activity of protein kinases (protein phosphorylases). Inactivation of a specific phosphatase by oxidant stress results in prolonged activity for the kinases that it controls in a specific cell type. Prolonged activity of specific kinases, in a cell, means that particular intracellular signal cascades are increasingly activated. Such alterations in the intracellular signal cascades, which proceed through successive phosphorylations of particular kinases that operate on a pathway, culminate in phosphorylation of proteins in many cell compartments, such as mitochondria or nucleus. This modification of specific regulatory proteins can result in a number of changes, ranging from ionic signals to wide alterations in patterns of gene expression. As a consequence, a cell may change its rate of proliferation, or die, depending on the signal networks that it operates. An intracellular oscillation of oxidant levels has been previously experimentally linked to maintenance of the rate of cell proliferation. As an example, when chelating redox-active iron present in the endosomal/lysosomal compartment of cultured epithelial cell line HeLa with the iron chelator desferrioxamine, cell proliferation is inhibited.

External links

References

  1. Proctor P (1972). "Electron-transfer factors in psychosis and dyskinesia". Physiol. Chem. Phys. 4 (4): 349–60. PMID 4680784.
  2. Bochner BR, Lee PC, Wilson SW, Cutler CW, Ames BN (1984). "AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress". Cell. 37 (1): 225–32. PMID 6373012. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  3. Irani K, Xia Y, Zweier JL; et al. (1997). "Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts". Science. 275 (5306): 1649–52. PMID 9054359. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  4. Doulias PT, Christoforidis S, Brunk UT, Galaris D (2003). "Endosomal and lysosomal effects of desferrioxamine: protection of [[HeLa]] cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest". Free Radic. Biol. Med. 35 (7): 719–28. PMID 14583336. {{cite journal}}: URL–wikilink conflict (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link).
Categories: