Misplaced Pages

Light: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 22:32, 20 April 2010 view sourceJavaJake (talk | contribs)53 edits Quantum theory: Removed opinion← Previous edit Revision as of 04:29, 21 April 2010 view source 63.18.110.162 (talk) Speed of lightNext edit →
Line 15: Line 15:
Different physicists have attempted to measure the speed of light throughout history. ] attempted to measure the speed of light in the seventeenth century. An early experiment to measure the speed of light was conducted by ], a Danish physicist, in 1676. Using a telescope, Ole observed the motions of ] and one of its ]s, ]. Noting discrepancies in the apparent period of Io's orbit, Rømer calculated that light takes about 22 minutes to traverse the diameter of ]'s orbit.<ref>''''. Statistical Science 2000, Vol. 15, No. 3, 254–278</ref> Unfortunately, its size was not known at that time. If Ole had known the diameter of the Earth's orbit, he would have calculated a speed of 227,000,000&nbsp;m/s. Different physicists have attempted to measure the speed of light throughout history. ] attempted to measure the speed of light in the seventeenth century. An early experiment to measure the speed of light was conducted by ], a Danish physicist, in 1676. Using a telescope, Ole observed the motions of ] and one of its ]s, ]. Noting discrepancies in the apparent period of Io's orbit, Rømer calculated that light takes about 22 minutes to traverse the diameter of ]'s orbit.<ref>''''. Statistical Science 2000, Vol. 15, No. 3, 254–278</ref> Unfortunately, its size was not known at that time. If Ole had known the diameter of the Earth's orbit, he would have calculated a speed of 227,000,000&nbsp;m/s.


Another, more accurate, measurement of the speed of light was performed in Europe by ] in 1849. Fizeau directed a beam of light at a mirror several kilometers away. A rotating cog wheel was placed in the path of the light beam as it traveled from the source, to the mirror and then returned to its origin. Fizeau found that at a certain rate of rotation, the beam would pass through one gap in the wheel on the way out and the next gap on the way back. Knowing the distance to the mirror, the number of teeth on the wheel, and the rate of rotation, Fizeau was able to calculate the speed of light as 313,000,000&nbsp;m/s. Another, more accurate, measurement of the speed of light was performed in Europe by ] in 1849. Fizeau directed a beam of light at a mirror several kilometers away. The game, you just lost. A rotating cog wheel was placed in the path of the light beam as it traveled from the source, to the mirror and then returned to its origin. Fizeau found that at a certain rate of rotation, the beam would pass through one gap in the wheel on the way out and the next gap on the way back. Knowing the distance to the mirror, the number of teeth on the wheel, and the rate of rotation, Fizeau was able to calculate the speed of light as 313,000,000&nbsp;m/s.


] used an experiment which used rotating mirrors to obtain a value of 298,000,000&nbsp;m/s in 1862. ] conducted experiments on the speed of light from 1877 until his death in 1931. He refined Foucault's methods in 1926 using improved rotating ]s to measure the ] it took light to make a round trip from ] to ] in ]. The precise measurements yielded a speed of 299,796,000&nbsp;m/s. ] used an experiment which used rotating mirrors to obtain a value of 298,000,000&nbsp;m/s in 1862. ] conducted experiments on the speed of light from 1877 until his death in 1931. He refined Foucault's methods in 1926 using improved rotating ]s to measure the ] it took light to make a round trip from ] to ] in ]. The precise measurements yielded a speed of 299,796,000&nbsp;m/s.

Revision as of 04:29, 21 April 2010

For other uses, see Light (disambiguation).

Light is electromagnetic radiation of a wavelength that is visible to the human eye (in a range from about 380 or 400 nanometres to about 760 or 780 nm). In physics, the term light sometimes refers to electromagnetic radiation of any wavelength, whether visible or not.

Four primary properties of light are intensity, frequency or wavelength, polarization, and phase

Light, which exists in tiny "packets" called photons, exhibits properties of both waves and particles. This property is referred to as the wave–particle duality. The study of light, known as optics, is an important research area in modern physics.

Speed of light

Main article: Speed of light

The speed of light in a vacuum is presently defined to be exactly 299,792,458 m/s (approximately 186,282 miles per second). The fixed value of the speed of light in SI units results from the fact that the metre is now defined in terms of the speed of light. Light always travels at a constant speed, even between particles of a substance through which it is shining. Photons excite the adjoining particles that in turn transfer the energy to the neighbor. This may appear to slow the beam down through its trajectory in realtime. The time lost between entry and exit accounts to the displacement of energy through the substance between each particle that is excited.

Different physicists have attempted to measure the speed of light throughout history. Galileo attempted to measure the speed of light in the seventeenth century. An early experiment to measure the speed of light was conducted by Ole Rømer, a Danish physicist, in 1676. Using a telescope, Ole observed the motions of Jupiter and one of its moons, Io. Noting discrepancies in the apparent period of Io's orbit, Rømer calculated that light takes about 22 minutes to traverse the diameter of Earth's orbit. Unfortunately, its size was not known at that time. If Ole had known the diameter of the Earth's orbit, he would have calculated a speed of 227,000,000 m/s.

Another, more accurate, measurement of the speed of light was performed in Europe by Hippolyte Fizeau in 1849. Fizeau directed a beam of light at a mirror several kilometers away. The game, you just lost. A rotating cog wheel was placed in the path of the light beam as it traveled from the source, to the mirror and then returned to its origin. Fizeau found that at a certain rate of rotation, the beam would pass through one gap in the wheel on the way out and the next gap on the way back. Knowing the distance to the mirror, the number of teeth on the wheel, and the rate of rotation, Fizeau was able to calculate the speed of light as 313,000,000 m/s.

Léon Foucault used an experiment which used rotating mirrors to obtain a value of 298,000,000 m/s in 1862. Albert A. Michelson conducted experiments on the speed of light from 1877 until his death in 1931. He refined Foucault's methods in 1926 using improved rotating mirrors to measure the time it took light to make a round trip from Mt. Wilson to Mt. San Antonio in California. The precise measurements yielded a speed of 299,796,000 m/s.

Two independent teams of physicists were able to bring light to a complete standstill by passing it through a Bose-Einstein Condensate of the element rubidium, one led by Dr. Lene Vestergaard Hau of Harvard University and the Rowland Institute for Science in Cambridge, Mass., and the other by Dr. Ronald L. Walsworth and Dr. Mikhail D. Lukin of the Harvard-Smithsonian Center for Astrophysics, also in Cambridge.

Electromagnetic spectrum

Main article: Electromagnetic spectrum
Electromagnetic spectrum with light highlighted

Generally, EM radiation (the designation 'radiation' excludes static electric and magnetic and near fields) is classified by wavelength into radio, microwave, infrared, the visible region we perceive as light, ultraviolet, X-rays and gamma rays.

The behavior of EM radiation depends on its wavelength. Higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths. When EM radiation interacts with single atoms and molecules, its behavior depends on the amount of energy per quantum it carries.

Refraction

Main article: Refraction

Refraction is the bending of light rays when passing from one transparent material to another. It is described by Snell's Law:

n 1 sin θ 1 = n 2 sin θ 2   . {\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}\ .}

where θ 1 {\displaystyle \theta _{1}} is the angle between the ray and the normal in the first medium, θ 2 {\displaystyle \theta _{2}} is the angle between the ray and the normal in the second medium, and n1 and n2 are the indices of refraction, n = 1 in a vacuum and n > 1 in a transparent substance.

When a beam of light crosses the boundary between a vacuum and another medium, or between two different media, the wavelength of the light changes, but the frequency remains constant. If the beam of light is not orthogonal (or rather normal) to the boundary, the change in wavelength results in a change in the direction of the beam. This change of direction is known as refraction.

The refractive quality of lenses is frequently used to manipulate light in order to change the apparent size of images. Magnifying glasses, spectacles, contact lenses, microscopes and refracting telescopes are all examples of this manipulation.

Light refraction is the main basis of measurement for gloss. Gloss is measured using a glossmeter.

Optics

Main article: Optics

The study of light and the interaction of light and matter is termed optics. The observation and study of optical phenomena such as rainbows and the aurora borealis offer many clues as to the nature of light as well as much enjoyment.

Light sources

See also: List of light sources
A cloud illuminated by sunlight

There are many sources of light. The most common light sources are thermal: a body at a given temperature emits a characteristic spectrum of black-body radiation. Examples include sunlight (the radiation emitted by the chromosphere of the Sun at around 6,000 K peaks in the visible region of the electromagnetic spectrum when plotted in wavelength units and roughly 40% of sunlight is visible), incandescent light bulbs (which emit only around 10% of their energy as visible light and the remainder as infrared), and glowing solid particles in flames. The peak of the blackbody spectrum is in the infrared for relatively cool objects like human beings. As the temperature increases, the peak shifts to shorter wavelengths, producing first a red glow, then a white one, and finally a blue color as the peak moves out of the visible part of the spectrum and into the ultraviolet. These colors can be seen when metal is heated to "red hot" or "white hot". Blue thermal emission is not often seen. The commonly seen blue colour in a gas flame or a welder's torch is in fact due to molecular emission, notably by CH radicals (emitting a wavelength band around 425 nm).

Atoms emit and absorb light at characteristic energies. This produces "emission lines" in the spectrum of each atom. Emission can be spontaneous, as in light-emitting diodes, gas discharge lamps (such as neon lamps and neon signs, mercury-vapor lamps, etc.), and flames (light from the hot gas itself—so, for example, sodium in a gas flame emits characteristic yellow light). Emission can also be stimulated, as in a laser or a microwave maser.

Deceleration of a free charged particle, such as an electron, can produce visible radiation: cyclotron radiation, synchrotron radiation, and bremsstrahlung radiation are all examples of this. Particles moving through a medium faster than the speed of light in that medium can produce visible Cherenkov radiation.

Certain chemicals produce visible radiation by chemoluminescence. In living things, this process is called bioluminescence. For example, fireflies produce light by this means, and boats moving through water can disturb plankton which produce a glowing wake.

Certain substances produce light when they are illuminated by more energetic radiation, a process known as fluorescence. Some substances emit light slowly after excitation by more energetic radiation. This is known as phosphorescence.

Phosphorescent materials can also be excited by bombarding them with subatomic particles. Cathodoluminescence is one example of this. This mechanism is used in cathode ray tube television sets and computer monitors.

A city illuminated by light bulbs

Certain other mechanisms can produce light:

When the concept of light is intended to include very-high-energy photons (gamma rays), additional generation mechanisms include:

Units and measures

Main articles: Photometry (optics) and Radiometry

Light is measured with two main alternative sets of units: radiometry consists of measurements of light power at all wavelengths, while photometry measures light with wavelength weighted with respect to a standardized model of human brightness perception. Photometry is useful, for example, to quantify Illumination (lighting) intended for human use. The SI units for both systems are summarized in the following tables.

SI radiometry units
Quantity Unit Dimension Notes
Name Symbol Name Symbol
Radiant energy Qe joule J MLT Energy of electromagnetic radiation.
Radiant energy density we joule per cubic metre J/m MLT Radiant energy per unit volume.
Radiant flux Φe watt W = J/s MLT Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Spectral flux Φe,ν watt per hertz W/Hz MLT Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm.
Φe,λ watt per metre W/m MLT
Radiant intensity Ie,Ω watt per steradian W/sr MLT Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν watt per steradian per hertz W⋅sr⋅Hz MLT Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr⋅nm. This is a directional quantity.
Ie,Ω,λ watt per steradian per metre W⋅sr⋅m MLT
Radiance Le,Ω watt per steradian per square metre W⋅sr⋅m MT Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance
Specific intensity
Le,Ω,ν watt per steradian per square metre per hertz W⋅sr⋅m⋅Hz MT Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr⋅m⋅nm. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Le,Ω,λ watt per steradian per square metre, per metre W⋅sr⋅m MLT
Irradiance
Flux density
Ee watt per square metre W/m MT Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance
Spectral flux density
Ee,ν watt per square metre per hertz W⋅m⋅Hz MT Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10 W⋅m⋅Hz) and solar flux unit (1 sfu = 10 W⋅m⋅Hz = 10 Jy).
Ee,λ watt per square metre, per metre W/m MLT
Radiosity Je watt per square metre W/m MT Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν watt per square metre per hertz W⋅m⋅Hz MT Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m⋅nm. This is sometimes also confusingly called "spectral intensity".
Je,λ watt per square metre, per metre W/m MLT
Radiant exitance Me watt per square metre W/m MT Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν watt per square metre per hertz W⋅m⋅Hz MT Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m⋅nm. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Me,λ watt per square metre, per metre W/m MLT
Radiant exposure He joule per square metre J/m MT Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν joule per square metre per hertz J⋅m⋅Hz MT Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m⋅nm. This is sometimes also called "spectral fluence".
He,λ joule per square metre, per metre J/m MLT
See also:
  1. Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  2. ^ Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
  3. ^ Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek letter nu, not to be confused with a letter "v", indicating a photometric quantity.)
  4. ^ Spectral quantities given per unit wavelength are denoted with suffix "λ".
  5. ^ Directional quantities are denoted with suffix "Ω".

SI photometry quantities
Quantity Unit Dimension
Notes
Name Symbol Name Symbol
Luminous energy Qv lumen second lm⋅s TJ The lumen second is sometimes called the talbot.
Luminous flux, luminous power Φv lumen (= candela steradian) lm (= cd⋅sr) J Luminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr) J Luminous flux per unit solid angle
Luminance Lv candela per square metre cd/m (= lm/(sr⋅m)) LJ Luminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit.
Illuminance Ev lux (= lumen per square metre) lx (= lm/m) LJ Luminous flux incident on a surface
Luminous exitance, luminous emittance Mv lumen per square metre lm/m LJ Luminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅s LTJ Time-integrated illuminance
Luminous energy density ωv lumen second per cubic metre lm⋅s/m LTJ
Luminous efficacy (of radiation) K lumen per watt lm/W MLTJ Ratio of luminous flux to radiant flux
Luminous efficacy (of a source) η lumen per watt lm/W MLTJ Ratio of luminous flux to power consumption
Luminous efficiency, luminous coefficient V 1 Luminous efficacy normalized by the maximum possible efficacy
See also:
  1. The symbols in this column denote dimensions; "L", "T" and "J" are for length, time and luminous intensity respectively, not the symbols for the units litre, tesla and joule.
  2. Standards organizations recommend that photometric quantities be denoted with a subscript "v" (for "visual") to avoid confusion with radiometric or photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
  3. ^ Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ for luminous efficacy of a source.

The photometry units are different from most systems of physical units in that they take into account how the human eye responds to light. The cone cells in the human eye are of three types which respond differently across the visible spectrum, and the cumulative response peaks at a wavelength of around 555 nm. Therefore, two sources of light which produce the same intensity (W/m) of visible light do not necessarily appear equally bright. The photometry units are designed to take this into account, and therefore are a better representation of how "bright" a light appears to be than raw intensity. They relate to raw power by a quantity called luminous efficacy, and are used for purposes like determining how to best achieve sufficient illumination for various tasks in indoor and outdoor settings. The illumination measured by a photocell sensor does not necessarily correspond to what is perceived by the human eye, and without filters which may be costly, photocells and charge-coupled devices (CCD) tend to respond to some infrared, ultraviolet or both.

Historical theories about light, in chronological order

Hindu and Buddhist theories

In ancient India, the Hindu schools of Samkhya and Vaisheshika, from around the 6th–5th century BC, developed theories on light. According to the Samkhya school, light is one of the five fundamental "subtle" elements (tanmatra) out of which emerge the gross elements. The atomicity of these elements is not specifically mentioned and it appears that they were actually taken to be continuous.

On the other hand, the Vaisheshika school gives an atomic theory of the physical world on the non-atomic ground of ether, space and time. (See Indian atomism.) The basic atoms are those of earth (prthivı), water (pani), fire (agni), and air (vayu), that should not be confused with the ordinary meaning of these terms. These atoms are taken to form binary molecules that combine further to form larger molecules. Motion is defined in terms of the movement of the physical atoms and it appears that it is taken to be non-instantaneous. Light rays are taken to be a stream of high velocity of tejas (fire) atoms. The particles of light can exhibit different characteristics depending on the speed and the arrangements of the tejas atoms. Around the first century BC, the Vishnu Purana refers to sunlight as the "the seven rays of the sun".

Later in 499, Aryabhata, who proposed a heliocentric solar system of gravitation in his Aryabhatiya, wrote that the planets and the Moon do not have their own light but reflect the light of the Sun.

The Indian Buddhists, such as Dignāga in the 5th century and Dharmakirti in the 7th century, developed a type of atomism that is a philosophy about reality being composed of atomic entities that are momentary flashes of light or energy. They viewed light as being an atomic entity equivalent to energy, similar to the modern concept of photons, though they also viewed all matter as being composed of these light/energy particles.

It is written in the Rigveda that light consists of three primary colors. "Mixing the three colours, ye have produced all the objects of sight!"

Greek and Hellenistic theories

Main article: Emission theory (vision)

In the fifth century BC, Empedocles postulated that everything was composed of four elements; fire, air, earth and water. He believed that Aphrodite made the human eye out of the four elements and that she lit the fire in the eye which shone out from the eye making sight possible. If this were true, then one could see during the night just as well as during the day, so Empedocles postulated an interaction between rays from the eyes and rays from a source such as the sun.

In about 300 BC, Euclid wrote Optica, in which he studied the properties of light. Euclid postulated that light travelled in straight lines and he described the laws of reflection and studied them mathematically. He questioned that sight is the result of a beam from the eye, for he asks how one sees the stars immediately, if one closes one's eyes, then opens them at night. Of course if the beam from the eye travels infinitely fast this is not a problem.

In 55 BC, Lucretius, a Roman who carried on the ideas of earlier Greek atomists, wrote:

"The light & heat of the sun; these are composed of minute atoms which, when they are shoved off, lose no time in shooting right across the interspace of air in the direction imparted by the shove." – On the nature of the Universe

Despite being similar to later particle theories, Lucretius's views were not generally accepted and light was still theorized as emanating from the eye.

Ptolemy (c. 2nd century) wrote about the refraction of light in his book Optics, and developed a theory of vision whereby objects are seen by rays of light emanating from the eyes.

Optical theory

Main article: History of optics See also: Book of Optics and Physics in medieval Islam
Ibn al-Haytham proved that light travels in straight lines through optical experiments.

The Muslim scientist, Ibn al-Haytham (965–1040), known as Alhacen or Alhazen in the West, developed a broad theory of vision based on geometry and anatomy in his Book of Optics (1021). Ibn al-Haytham provided the first correct description of how vision works, explaining that it is not due to objects being seen by rays of light emanating from the eyes, as Euclid and Ptolemy had assumed, but due to light rays entering the eyes. Ibn al-Haytham postulated that every point on an illuminated surface radiates light rays in all directions, but that only one ray from each point can be seen: the ray that strikes the eye perpendicularly. The other rays strike at different angles and are not seen. He conducted experiments to support his argument, which included the development of apparatus such as the pinhole camera and camera obscura, which produces an inverted image. Alhacen held light rays to be streams of minute particles that "lack all sensible qualities except energy" and travel at a finite speed. He improved Ptolemy's theory of the refraction of light, and went on to describe the laws of refraction, though this was earlier discovered by Ibn Sahl (c. 940-1000) several decades before him.

A page of Ibn Sahl's manuscript showing his discovery of the law of refraction (Snell's law).

He also carried out the first experiments on the dispersion of light into its constituent colors. His major work Kitab al-Manazir (Book of Optics) was translated into Latin in the Middle Ages, as well his book dealing with the colors of sunset. He dealt at length with the theory of various physical phenomena like shadows, eclipses, the rainbow. He also attempted to explain binocular vision, and gave an explanation of the apparent increase in size of the sun and the moon when near the horizon, known as the moon illusion. Because of his extensive experimental research on optics, Ibn al-Haytham is considered the "father of modern optics".

Ibn al-Haytham developed the camera obscura and pinhole camera for his experiments on light.

Ibn al-Haytham also correctly argued that we see objects because the sun's rays of light, which he believed to be streams of tiny energy particles travelling in straight lines, are reflected from objects into our eyes. He understood that light must travel at a large but finite velocity, and that refraction is caused by the velocity being different in different substances. He also studied spherical and parabolic mirrors, and understood how refraction by a lens will allow images to be focused and magnification to take place. He understood mathematically why a spherical mirror produces aberration.

Ibn al-Haytham's optical model of light was "the first comprehensive and systematic alternative to Greek optical theories." He initiated a revolution in optics and visual perception, also known as the 'Optical Revolution', and laid the foundations for a physical optics. As such, he is often regarded as the "father of modern optics."

Avicenna (980–1037) agreed that the speed of light is finite, as he "observed that if the perception of light is due to the emission of some sort of particles by a luminous source, the speed of light must be finite." Abū Rayhān al-Bīrūnī (973–1048) also agreed that light has a finite speed, and he was the first to discover that the speed of light is much faster than the speed of sound. In the late 13th and early 14th centuries, Qutb al-Din al-Shirazi (1236–1311) and his student Kamāl al-Dīn al-Fārisī (1260–1320) continued the work of Ibn al-Haytham, and they were the first to give the correct explanations for the rainbow phenomenon.

René Descartes (1596–1650) held that light was a mechanical property of the luminous body, rejecting the "forms" of Ibn al-Haytham and Whitelo as well as the "species" of Bacon, Grosseteste, and Kepler. In 1637 he published a theory of the refraction of light that assumed, incorrectly, that light travelled faster in a denser medium than in a less dense medium. Descartes arrived at this conclusion by analogy with the behaviour of sound waves. Although Descartes was incorrect about the relative speeds, he was correct in assuming that light behaved like a wave and in concluding that refraction could be explained by the speed of light in different media.

Descartes is not the first to use the mechanical analogies but because he clearly asserts that light is only a mechanical property of the luminous body and the transmitting medium, Descartes' theory of light is regarded as the start of modern physical optics.

Particle theory

Main article: Corpuscular theory of light

Ibn al-Haytham (Alhazen, 965–1040) proposed a particle theory of light in his Book of Optics (1021). He held light rays to be streams of minute energy particles that travel in straight lines at a finite speed. He states in his optics that "the smallest parts of light," as he calls them, "retain only properties that can be treated by geometry and verified by experiment; they lack all sensible qualities except energy." Avicenna (980–1037) also proposed that "the perception of light is due to the emission of some sort of particles by a luminous source".

Pierre Gassendi (1592–1655), an atomist, proposed a particle theory of light which was published posthumously in the 1660s. Isaac Newton studied Gassendi's work at an early age, and preferred his view to Descartes' theory of the plenum. He stated in his Hypothesis of Light of 1675 that light was composed of corpuscles (particles of matter) which were emitted in all directions from a source. One of Newton's arguments against the wave nature of light was that waves were known to bend around obstacles, while light travelled only in straight lines. He did, however, explain the phenomenon of the diffraction of light (which had been observed by Francesco Grimaldi) by allowing that a light particle could create a localised wave in the aether.

Newton's theory could be used to predict the reflection of light, but could only explain refraction by incorrectly assuming that light accelerated upon entering a denser medium because the gravitational pull was greater. Newton published the final version of his theory in his Opticks of 1704. His reputation helped the particle theory of light to hold sway during the 18th century. The particle theory of light led Laplace to argue that a body could be so massive that light could not escape from it. In other words it would become what is now called a black hole. Laplace withdrew his suggestion when the wave theory of light was firmly established. A translation of his essay appears in The large scale structure of space-time, by Stephen Hawking and George F. R. Ellis.

Wave theory

In the 1660s, Robert Hooke published a wave theory of light. Christiaan Huygens worked out his own wave theory of light in 1678, and published it in his Treatise on light in 1690. He proposed that light was emitted in all directions as a series of waves in a medium called the Luminiferous ether. As waves are not affected by gravity, it was assumed that they slowed down upon entering a denser medium.

Thomas Young's sketch of the two-slit experiment showing the diffraction of light. Young's experiments supported the theory that light consists of waves.

The wave theory predicted that light waves could interfere with each other like sound waves (as noted around 1800 by Thomas Young), and that light could be polarized, if it were a transverse wave. Young showed by means of a diffraction experiment that light behaved as waves. He also proposed that different colors were caused by different wavelengths of light, and explained color vision in terms of three-colored receptors in the eye.

Another supporter of the wave theory was Leonhard Euler. He argued in Nova theoria lucis et colorum (1746) that diffraction could more easily be explained by a wave theory.

Later, Augustin-Jean Fresnel independently worked out his own wave theory of light, and presented it to the Académie des Sciences in 1817. Simeon Denis Poisson added to Fresnel's mathematical work to produce a convincing argument in favour of the wave theory, helping to overturn Newton's corpuscular theory. By the year 1821, Fresnel was able to show via mathematical methods that polarization could be explained only by the wave theory of light and only if light was entirely transverse, with no longitudinal vibration whatsoever.

The weakness of the wave theory was that light waves, like sound waves, would need a medium for transmission. A hypothetical substance called the luminiferous aether was proposed, but its existence was cast into strong doubt in the late nineteenth century by the Michelson-Morley experiment.

Newton's corpuscular theory implied that light would travel faster in a denser medium, while the wave theory of Huygens and others implied the opposite. At that time, the speed of light could not be measured accurately enough to decide which theory was correct. The first to make a sufficiently accurate measurement was Léon Foucault, in 1850. His result supported the wave theory, and the classical particle theory was finally abandoned.

Electromagnetic theory

A linearly-polarized light wave frozen in time and showing the two oscillating components of light; an electric field and a magnetic field perpendicular to each other and to the direction of motion (a transverse wave).

In 1845, Michael Faraday discovered that the plane of polarization of linearly polarized light is rotated when the light rays travel along the magnetic field direction in the presence of a transparent dielectric, an effect now known as Faraday rotation. This was the first evidence that light was related to electromagnetism. In 1846 he speculated that light might be some form of disturbance propagating along magnetic field lines. Faraday proposed in 1847 that light was a high-frequency electromagnetic vibration, which could propagate even in the absence of a medium such as the ether.

Faraday's work inspired James Clerk Maxwell to study electromagnetic radiation and light. Maxwell discovered that self-propagating electromagnetic waves would travel through space at a constant speed, which happened to be equal to the previously measured speed of light. From this, Maxwell concluded that light was a form of electromagnetic radiation: he first stated this result in 1862 in On Physical Lines of Force. In 1873, he published A Treatise on Electricity and Magnetism, which contained a full mathematical description of the behaviour of electric and magnetic fields, still known as Maxwell's equations. Soon after, Heinrich Hertz confirmed Maxwell's theory experimentally by generating and detecting radio waves in the laboratory, and demonstrating that these waves behaved exactly like visible light, exhibiting properties such as reflection, refraction, diffraction, and interference. Maxwell's theory and Hertz's experiments led directly to the development of modern radio, radar, television, electromagnetic imaging, and wireless communications.

The special theory of relativity

The wave theory was wildly successful in explaining nearly all optical and electromagnetic phenomena, and was a great triumph of nineteenth century physics. By the late nineteenth century, however, a handful of experimental anomalies remained that could not be explained by or were in direct conflict with the wave theory. One of these anomalies involved a controversy over the speed of light. The constant speed of light predicted by Maxwell's equations and confirmed by the Michelson-Morley experiment contradicted the mechanical laws of motion that had been unchallenged since the time of Galileo, which stated that all speeds were relative to the speed of the observer. In 1905, Albert Einstein resolved this paradox by revising the Galilean model of space and time to account for the constancy of the speed of light. Einstein formulated his ideas in his special theory of relativity, which advanced humankind's understanding of space and time. Einstein also demonstrated a previously unknown fundamental equivalence between energy and mass with his famous equation

E = m c 2 {\displaystyle E=mc^{2}\,}

where E is energy, m is, depending on the context, the rest mass or the relativistic mass, and c is the speed of light in a vacuum.

Particle theory revisited

Another experimental anomaly was the photoelectric effect, by which light striking a metal surface ejected electrons from the surface, causing an electric current to flow across an applied voltage. Experimental measurements demonstrated that the energy of individual ejected electrons was proportional to the frequency, rather than the intensity, of the light. Furthermore, below a certain minimum frequency, which depended on the particular metal, no current would flow regardless of the intensity. These observations appeared to contradict the wave theory, and for years physicists tried in vain to find an explanation. In 1905, Einstein solved this puzzle as well, this time by resurrecting the particle theory of light to explain the observed effect. Because of the preponderance of evidence in favor of the wave theory, however, Einstein's ideas were met initially by great skepticism among established physicists. But eventually Einstein's explanation of the photoelectric effect would triumph, and it ultimately formed the basis for wave–particle duality and much of quantum mechanics.

Quantum theory

A third anomaly that arose in the late 19th century involved a contradiction between the wave theory of light and measurements of the electromagnetic spectrum emitted by thermal radiators, or so-called black bodies. Physicists struggled with this problem, which later became known as the ultraviolet catastrophe, unsuccessfully for many years. In 1900, Max Planck developed a new theory of black-body radiation that explained the observed spectrum. Planck's theory was based on the idea that black bodies emit light (and other electromagnetic radiation) only as discrete bundles or packets of energy. These packets were called quanta, and the particle of light was given the name photon, to correspond with other particles being described around this time, such as the electron and proton. A photon has an energy, E, proportional to its frequency, f, by

E = h f = h c λ {\displaystyle E=hf={\frac {hc}{\lambda }}\,\!}

where h is Planck's constant, λ {\displaystyle \lambda } is the wavelength and c is the speed of light. Likewise, the momentum p of a photon is also proportional to its frequency and inversely proportional to its wavelength:

p = E c = h f c = h λ . {\displaystyle p={E \over c}={hf \over c}={h \over \lambda }.}

As it originally stood, this theory did not explain the simultaneous wave- and particle-like natures of light, though Planck would later work on theories that did. In 1918, Planck received the Nobel Prize in Physics for his part in the founding of quantum theory.

Wave–particle duality

The modern theory that explains the nature of light includes the notion of wave–particle duality, described by Albert Einstein in the early 1900s, based on his study of the photoelectric effect and Planck's results. Einstein asserted that the energy of a photon is proportional to its frequency. More generally, the theory states that everything has both a particle nature and a wave nature, and various experiments can be done to bring out one or the other. The particle nature is more easily discerned if an object has a large mass, and it was not until a bold proposition by Louis de Broglie in 1924 that the scientific community realized that electrons also exhibited wave–particle duality. The wave nature of electrons was experimentally demonstrated by Davisson and Germer in 1927. Einstein received the Nobel Prize in 1921 for his work with the wave–particle duality on photons (especially explaining the photoelectric effect thereby), and de Broglie followed in 1929 for his extension to other particles.

Quantum electrodynamics

The quantum mechanical theory of light and electromagnetic radiation continued to evolve through the 1920s and 1930's, and culminated with the development during the 1940s of the theory of quantum electrodynamics, or QED. This so-called quantum field theory is among the most comprehensive and experimentally successful theories ever formulated to explain a set of natural phenomena. QED was developed primarily by physicists Richard Feynman, Freeman Dyson, Julian Schwinger, and Shin-Ichiro Tomonaga. Feynman, Schwinger, and Tomonaga shared the 1965 Nobel Prize in Physics for their contributions.

Light pressure

Main article: Radiation pressure

Light pushes on objects in its path, just as the wind would do. This pressure is most easily explainable in particle theory: photons hit and transfer their momentum. Light pressure can cause asteroids to spin faster, acting on their irregular shapes as on the vanes of a windmill. The possibility to make solar sails that would accelerate spaceships in space is also under investigation.

Although the motion of the Crookes radiometer was originally attributed to light pressure, this interpretation is incorrect; the characteristic Crookes rotation is the result of a partial vacuum. This should not be confused with the Nichols radiometer, in which the motion is directly caused by light pressure.

Spirituality

Further information: Light and darkness
File:Kallara Pazhyapalli Light.JPG
An intricate display for the feast of St. Thomas at Kallara Pazhayapalli in Kottayam, Kerala, India dramatically illustrates the importance of light in religion.

The sensory perception of light plays a central role in spirituality (vision, enlightenment, darshan, Tabor Light). The presence of light as opposed to its absence (darkness) is a common metaphor of good and evil, knowledge and ignorance, and similar concepts. This idea is prevalent in both Eastern and Western spirituality.

See also

References

  1. CIE (1987). International Lighting Vocabulary. Number 17.4. CIE, 4th edition. ISBN 978-3-900734-07-7.
    By the International Lighting Vocabulary, the definition of light is: “Any radiation capable of causing a visual sensation directly.”
  2. Gregory Hallock Smith (2006). Camera lenses: from box camera to digital. SPIE Press. p. 4. ISBN 9780819460936.
  3. Narinder Kumar (2008). Comprehensive Physics XII. Laxmi Publications. p. 1416. ISBN 9788170085928.
  4. Scientific Method, Statistical Method and the Speed of Light. Statistical Science 2000, Vol. 15, No. 3, 254–278
  5. Vyasa, Krishna-Dwai, The Mahabharata of Krishna-Dwaipayana Vyasa First Book Adi Parva, The Echo Library, p. 41, ISBN 978-1-40687-045-9, Section III , p. 41
  6. Ptolemy and A. Mark Smith (1996). Ptolemy's Theory of Visual Perception: An English Translation of the Optics with Introduction and Commentary. Diane Publishing. p. 23. ISBN 0-871-69862-5.
  7. Bashar Saad, Hassan Azaizeh, Omar Said (October 2005). "Tradition and Perspectives of Arab Herbal Medicine: A Review", Evidence-based Complementary and Alternative Medicine 2 (4), p. 475-479 . Oxford University Press.
  8. D. C. Lindberg, Theories of Vision from al-Kindi to Kepler, (Chicago, Univ. of Chicago Pr., 1976), pp. 60-7.
  9. History of Photography and the Camera
  10. ^ Rashed, Roshdi (2007), "The Celestial Kinematics of Ibn al-Haytham", Arabic Sciences and Philosophy, 17, Cambridge University Press: 7–55 , doi:10.1017/S0957423907000355:

    "In his optics ‘‘the smallest parts of light’’, as he calls them, retain only properties that can be treated by geometry and verified by experiment; they lack all sensible qualities except energy."

  11. ^ O'Connor, John J.; Robertson, Edmund F., "Abu Ali al-Hasan ibn al-Haytham", MacTutor History of Mathematics Archive, University of St Andrews
  12. ^ MacKay, R. J.; Oldford, R. W. (August 2000), "Scientific Method, Statistical Method and the Speed of Light", Statistical Science, 15 (3): 254–78, doi:10.1214/ss/1009212817
  13. ^ Sami Hamarneh (March 1972). Review of Hakim Mohammed Said, Ibn al-Haitham, Isis 63 (1), p. 119.
  14. K. B. Wolf, "Geometry and dynamics in refracting systems", European Journal of Physics 16, p. 14-20, 1995.
  15. R. Rashed, "A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses", Isis 81, p. 464–491, 1990.
  16. R. L. Verma (1969). Al-Hazen: father of modern optics.
  17. D. C. Lindberg, "Alhazen's Theory of Vision and its Reception in the West", Isis, 58 (1967), p. 322.
  18. Sabra, A. I.; Hogendijk, J. P. (2003), The Enterprise of Science in Islam: New Perspectives, MIT Press, pp. 85–118, ISBN 0262194821, OCLC 237875424
  19. Hatfield, Gary (1996), "Was the Scientific Revolution Really a Revolution in Science?", in Ragep, F. J.; Ragep, Sally P.; Livesey, Steven John (eds.), Tradition, Transmission, Transformation: Proceedings of Two Conferences on Pre-modern Science held at the University of Oklahoma, Brill Publishers, p. 500, ISBN 9004091262, OCLC 19740432 234073624 234096934 {{citation}}: Check |oclc= value (help)
  20. Simon, Gérard (2006), "The Gaze in Ibn al-Haytham", The Medieval History Journal, 9 (1): 89–98, doi:10.1177/097194580500900105
  21. Bellosta, Hélèna (2002), "Burning Instruments: From Diocles to Ibn Sahl", Arabic Sciences and Philosophy, 12, Cambridge University Press: 285–303, doi:10.1017/S095742390200214X
  22. Rashed, Roshdi (2 August 2002), "Portraits of Science: A Polymath in the 10th Century", Science, 297 (5582): 773, doi:10.1126/science.1074591, PMID 12161634 {{citation}}: More than one of |pages= and |page= specified (help)
  23. Lindberg, David C. (1967), "Alhazen's Theory of Vision and Its Reception in the West", Isis, 58 (3): 321–341 , doi:10.1086/350266
  24. Bala, Arun, The Dialogue of Civilizations in the Birth of Modern Science, Palgrave Macmillan
  25. ^ R. L. Verma "Al-Hazen: father of modern optics", Al-Arabi, 8 (1969): 12-13.
  26. Toomer, G. J. (December 1964), "Review: Ibn al-Haythams Weg zur Physik by Matthias Schramm", Isis, 55 (4): 463–465, doi:10.1086/349914{{citation}}: CS1 maint: date and year (link)
  27. ^ George Sarton, Introduction to the History of Science, Vol. 1, p. 710.
  28. O'Connor, John J.; Robertson, Edmund F., "Al-Biruni", MacTutor History of Mathematics Archive, University of St Andrews
  29. O'Connor, John J.; Robertson, Edmund F., "Al-Farisi", MacTutor History of Mathematics Archive, University of St Andrews
  30. Theories of light, from Descartes to Newton A. I. Sabra CUP Archive,1981 pg 48 ISBN 0521284368, 9780521284363
  31. 'Theories of light, from Descartes to Newton A. I. Sabra CUP Archive,1981 pg 48 ISBN 0521284368, 9780521284363
  32. David Cassidy, Gerald Holton, James Rutherford (2002). Understanding Physics. Birkhäuser. ISBN 0387987568.{{cite book}}: CS1 maint: multiple names: authors list (link)
  33. Longair, Malcolm. Theoretical Concepts in Physics (2003) p. 87.
  34. Longair, Malcolm. Theoretical Concepts in Physics (2003) p. 87
  35. Kathy A. (02.05.2004). "Asteroids Get Spun By the Sun". Discover Magazine. {{cite web}}: Check date values in: |date= (help)
  36. "Solar Sails Could Send Spacecraft 'Sailing' Through Space". NASA. 2004-08-31.
  37. "NASA team successfully deploys two solar sail systems". NASA. 08.9.2004. {{cite web}}: Check date values in: |date= (help)
  38. P. Lebedev, Untersuchungen über die Druckkräfte des Lichtes, Ann. Phys. 6, 433 (1901).
  39. Nichols, E.F & Hull, G.F. (1903) The Pressure due to Radiation, The Astrophysical Journal,Vol.17 No.5, p.315–351
Category: