Misplaced Pages

G-code: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 17:12, 4 December 2011 editThree-quarter-ten (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers17,760 edits Letter addresses: +← Previous edit Revision as of 19:06, 6 December 2011 edit undo90.175.49.168 (talk) External linksNext edit →
Line 456: Line 456:
* *
* *
* also available as a * also available as a
* http://museum.mit.edu/150/86 Has several links (including history of MIT Servo Lab) * http://museum.mit.edu/150/86 Has several links (including history of MIT Servo Lab)



Revision as of 19:06, 6 December 2011

"G-code" redirects here. For other uses, see G-code (disambiguation) and G programming language (disambiguation).
G-code
Designed byMassachusetts Institute of Technology
First appeared1950s (first edition)
Filename extensions.mpt, .mpf .nc and several others
Major implementations
many, mainly Siemens Sinumeric, FANUC, Haas, Heidenhain, Mazak. Generally there is one international standard - ISO 6983.

G-code is the common name for the most widely used computer numerical control (CNC) programming language, which has many implementations. Used mainly in automation, it is part of computer-aided engineering. G-code is sometimes called G programming language. (The names of the language are explained at "Etymology".)

In fundamental terms, G-code is a language in which people tell computerized machine tools what to make and how to make it. The "what" and "how" are mostly defined by instructions on where to move to, how fast to move, and through what path to move.

Implementations

The first implementation of numerical control was developed at the MIT Servomechanisms Laboratory in the early 1950s. In the decades since, many implementations have been developed by many (commercial and noncommercial) organizations. G-code has often been used in these implementations. The main standardized version used in the United States was settled by the Electronic Industries Alliance in the early 1960s. A final revision was approved in February 1980 as RS274D. In Europe, the standard ISO 6983 is often used, although in varied states sometimes used other standards, example DIN 66025 or PN-73M-55256, PN-93/M-55251 in Poland.

Extensions and variations have been added independently by control manufacturers and machine tool manufacturers, and operators of a specific controller must be aware of differences of each manufacturer's product.

One standardized version of G-code, known as BCL, is used only on very few machines.

During the 1970s through 1990s, many CNC machine tool builders attempted to overcome compatibility difficulties by standardizing on machine tool controllers built by Fanuc. Siemens was another market dominator in CNC controls, especially in Europe. In the 2010s, controller differences and incompatibility are not as troublesome because machining operations are developed with CAD/CAM applications that can output the appropriate G-code for a specific machine tool.

Some CNC machines use "conversational" programming, which is a wizard-like programming mode that either hides G-code or completely bypasses the use of G-code. Some popular examples are Southwestern Industries' ProtoTRAK, Mazak's Mazatrol, Hurco's Ultimax, Haas' Intuitive Programming System (IPS), and Mori Seiki's CAPS conversational software.

G-code began as a limited type of language that lacked constructs such as loops, conditional operators, and programmer-declared variables with natural-word-including names (or the expressions in which to use them). It was thus unable to encode logic; it was essentially just a way to "connect the dots" where many of the dots' locations were figured out longhand by the programmer. The latest implementations of G-code include such constructs, creating a language somewhat closer to a high-level programming language. The more a programmer can tell the machine what end result is desired, and leave the intermediate calculations to the machine, the more s/he uses the machine's computational power to full advantage.

Specific codes

G-codes are also called preparatory codes, and are any word in a CNC program that begins with the letter "G". Generally it is a code telling the machine tool what type of action to perform, such as:

  • Rapid move (transport the tool through space to the place where it is needed for cutting; do this as quickly as possible)
  • Controlled feed move in a straight line or arc
  • Series of controlled feed moves that would result in a hole being bored, a workpiece cut (routed) to a specific dimension, or a profile (contour) shape added to the edge of a workpiece
  • Set tool information such as offset
  • Switch coordinate systems

There are other codes; the type codes can be thought of like registers in a computer.

Letter addresses

Some letter addresses are used only in milling or only in turning; most are used in both. Bold below are the letters seen most frequently throughout a program.

Sources: Smid; Green et al.

Variable Description Corollary info
A Absolute or incremental position of A axis (rotational axis around X axis)
B Absolute or incremental position of B axis (rotational axis around Y axis)
C Absolute or incremental position of C axis (rotational axis around Z axis)
D Defines diameter or radial offset used for cutter compensation. D is used for depth of cut on lathes.
E Precision feedrate for threading on lathes
F Defines feed rate
G Address for preparatory commands G commands often tell the control what kind of motion is wanted (e.g., rapid positioning, linear feed, circular feed, fixed cycle) or what offset value to use.
H Defines tool length offset;
Incremental axis corresponding to C axis (e.g., on a turn-mill)
I Defines arc size in X axis for G02 or G03 arc commands.
Also used as a parameter within some fixed cycles.
J Defines arc size in Y axis for G02 or G03 arc commands.
Also used as a parameter within some fixed cycles.
K Defines arc size in Z axis for G02 or G03 arc commands.
Also used as a parameter within some fixed cycles, equal to L address.
L Fixed cycle loop count;
Specification of what register to edit using G10
Fixed cycle loop count: Defines number of repetitions ("loops") of a fixed cycle at each position. Assumed to be 1 unless programmed with another integer. Sometimes the K address is used instead of L. With incremental positioning (G91), a series of equally spaced holes can be programmed as a loop rather than as individual positions.
G10 use: Specification of what register to edit (work offsets, tool radius offsets, tool length offsets, etc.).
M Miscellaneous function Action code, auxiliary command; descriptions vary. Many M-codes call for machine functions, which is why people often say that the "M" stands for "machine", although it was not intended to.
N Line (block) number in program;
System parameter number to be changed using G10
Line (block) numbers: Optional, so often omitted. Necessary for certain tasks, such as M99 P address (to tell the control which block of the program to return to if not the default one) or GoTo statements (if the control supports those). N numbering need not increment by 1 (for example, it can increment by 10, 20, or 1000) and can be used on every block or only in certain spots throughout a program.
System parameter number: G10 allows changing of system parameters under program control.
O Program name For example, O4501. For many years it was common for CNC control displays to use slashed zero glyphs to ensure effortless distinction of letter "O" from digit "0". Today's GUI controls often have a choice of fonts, like a PC does.
P Serves as parameter address for various G and M codes
  • With G04, defines dwell time value.
  • Also serves as a parameter in some canned cycles, representing dwell times or other variables.
  • Also used in the calling and termination of subprograms. (With M98, it specifies which subprogram to call; with M99, it specifies which block number of the main program to return to.)
Q Peck increment in canned cycles For example, G73, G83 (peck drilling cycles)
R Defines size of arc radius or defines retract height in canned cycles
S Defines speed, either spindle speed or surface speed depending on mode Data type = integer. In G97 mode (which is usually the default), an integer after S is interpreted as a number of rev/min (rpm). In G96 mode (CSS), an integer after S is interpreted as surface speed—sfm (G20) or m/min (G21). See also Speeds and feeds. On multifunction (turn-mill or mill-turn) machines, which spindle gets the input (main spindle or subspindles) is determined by other M codes.
T Tool selection To understand how the T address works and how it interacts (or not) with M06, one must study the various methods, such as lathe turret programming, ATC fixed tool selection, ATC random memory tool selection, the concept of "next tool waiting", and empty tools. Programming on any particular machine tool requires knowing which method that machine uses. Ways of obtaining this training are mentioned in the comments for M06.
U Incremental axis corresponding to X axis (typically only lathe group A controls)
Also defines dwell time on some machines (instead of "P" or "X").
In these controls, X and U obviate G90 and G91, respectively. On these lathes, G90 is instead a fixed cycle address for roughing.
V Incremental axis corresponding to Y axis Until the 2000s, the V address was very rarely used, because most lathes that used U and W didn't have a Y-axis, so they didn't use V. (Green et al 1996 did not even list V in their table of addresses.) That is still often the case, although the proliferation of live lathe tooling and turn-mill machining has made V address usage less rare than it used to be (Smid 2008 shows an example). See also G18.
W Incremental axis corresponding to Z axis (typically only lathe group A controls) In these controls, Z and W obviate G90 and G91, respectively. On these lathes, G90 is instead a fixed cycle address for roughing.
X Absolute or incremental position of X axis.
Also defines dwell time on some machines (instead of "P" or "U").
Y Absolute or incremental position of Y axis
Z Absolute or incremental position of Z axis The main spindle's axis of rotation often determines which axis of a machine tool is labeled as Z.

List of G-codes commonly found on Fanuc and similarly designed controls

Sources: Smid; Green et al.

Code Description Milling
( M )
Turning
( T )
Corollary info
G00 Rapid positioning M T On 2- or 3-axis moves, G00 (unlike G01) traditionally does not necessarily move in a single straight line between start point and end point. It moves each axis at its max speed until its vector is achieved. Shorter vector usually finishes first (given similar axis speeds). This matters because it may yield a dog-leg or hockey-stick motion, which the programmer needs to consider depending on what obstacles are nearby, to avoid a crash. Some machines offer interpolated rapids as a feature for ease of programming (safe to assume a straight line).
G01 Linear interpolation M T The most common workhorse code for feeding during a cut. The program specs the start and end points, and the control automatically calculates (interpolates) the intermediate points to pass through that will yield a straight line (hence "linear"). The control then calculates the angular velocities at which to turn the axis leadscrews via their servomotors or stepper motors. The computer performs thousands of calculations per second, and the motors react quickly to each input. Thus the actual toolpath of the machining takes place with the given feedrate on a path that is accurately linear to within very small limits.
G02 Circular interpolation, clockwise M T Very similar in concept to G01. Again, the control interpolates intermediate points and commands the servo- or stepper motors to rotate the amount needed for the leadscrew to translate the motion to the correct tool tip positioning. This process repeated thousands of times per minute generates the desired toolpath. In the case of G02, the interpolation generates a circle rather than a line. As with G01, the actual toolpath of the machining takes place with the given feedrate on a path that accurately matches the ideal (in G02's case, a circle) to within very small limits. In fact, the interpolation is so precise (when all conditions are correct) that milling an interpolated circle can obviate operations such as drilling, and often even fine boring. On most controls you cannot start G41 or G42 in G02 or G03 modes. You must already have compensated in an earlier G01 block. Often a short linear lead-in movement will be programmed, merely to allow cutter compensation before the main event, the circle-cutting, begins.
G03 Circular interpolation, counterclockwise M T Same corollary info as for G02.
G04 Dwell M T Takes an address for dwell period (may be X, U, or P). The dwell period is specified in milliseconds.
G05 P10000 High-precision contour control (HPCC) M   Uses a deep look-ahead buffer and simulation processing to provide better axis movement acceleration and deceleration during contour milling
G05.1 Q1. Ai Nano contour control M   Uses a deep look-ahead buffer and simulation processing to provide better axis movement acceleration and deceleration during contour milling
G07 Imaginary axis designation M    
G09 Exact stop check M T  
G10 Programmable data input M T  
G11 Data write cancel M T  
G12 Full-circle interpolation, clockwise M   Fixed cycle for ease of programming 360° circular interpolation with blend-radius lead-in and lead-out. Not standard on Fanuc controls.
G13 Full-circle interpolation, counterclockwise M   Fixed cycle for ease of programming 360° circular interpolation with blend-radius lead-in and lead-out. Not standard on Fanuc controls.
G17 XY plane selection M    
G18 ZX plane selection M T On most CNC lathes (built 1960s to 2000s), ZX is the only available plane, so no G17 to G19 codes are used. This is now changing as the era begins in which live tooling, multitask/multifunction, and mill-turn/turn-mill gradually become the "new normal". But the simpler, traditional form factor will probably not disappear—just move over to make room for the newer configurations. See also V address.
G19 YZ plane selection M    
G20 Programming in inches M T Somewhat uncommon except in USA and (to lesser extent) Canada and UK. However, in the global marketplace, competence with both G20 and G21 always stands some chance of being necessary at any time. The usual minimum increment in G20 is one ten-thousandth of an inch (0.0001"), which is a larger distance than the usual minimum increment in G21 (one thousandth of a millimeter, .001 mm, that is, one micrometre). This physical difference sometimes favors G21 programming.
G21 Programming in millimeters (mm) M T Prevalent worldwide. However, in the global marketplace, competence with both G20 and G21 always stands some chance of being necessary at any time.
G28 Return to home position (machine zero, aka machine reference point) M T Takes X Y Z addresses which define the intermediate point that the tool tip will pass through on its way home to machine zero. They are in terms of part zero (aka program zero), NOT machine zero.
G30 Return to secondary home position (machine zero, aka machine reference point) M T Takes a P address specifying which machine zero point is desired, if the machine has several secondary points (P1 to P4). Takes X Y Z addresses which define the intermediate point that the tool tip will pass through on its way home to machine zero. They are in terms of part zero (aka program zero), NOT machine zero.
G31 Skip function (used for probes and tool length measurement systems) M    
G32 Single-point threading, longhand style (if not using a cycle, e.g., G76)   T Similar to G01 linear interpolation, except with automatic spindle synchronization for single-point threading.
G33 Constant-pitch threading M    
G33 Single-point threading, longhand style (if not using a cycle, e.g., G76)   T Some lathe controls assign this mode to G33 rather than G32.
G34 Variable-pitch threading M    
G40 Tool radius compensation off M T Cancels G41 or G42.
G41 Tool radius compensation left M T Milling: Given righthand-helix cutter and M03 spindle direction, G41 corresponds to climb milling (down milling). Takes an address (D or H) that calls an offset register value for radius.
Turning: Often needs no D or H address on lathes, because whatever tool is active automatically calls its geometry offsets with it. (Each turret station is bound to its geometry offset register.)

G41 and G42 for milling has become less frequently used since CAM programming has become more common. CAM systems allow the user to program as if with a zero-diameter cutter. The fundamental concept of cutter radius compensation is still in play (i.e., that the surface produced will be distance R away from the cutter center), but the programming mindset is different; the human does not choreograph the toolpath with conscious, painstaking attention to G41, G42, and G40, because the CAM software takes care of it.

G42 Tool radius compensation right M T Similar corollary info as for G41. Given righthand-helix cutter and M03 spindle direction, G42 corresponds to conventional milling (up milling).

See also the comments for G41.

G43 Tool height offset compensation negative M   Takes an address, usually H, to call the tool length offset register value. The value is negative because it will be added to the gauge line position. G43 is the commonly used version (vs G44).
G44 Tool height offset compensation positive M   Takes an address, usually H, to call the tool length offset register value. The value is positive because it will be subtracted from the gauge line position. G44 is the seldom-used version (vs G43).
G45 Axis offset single increase M    
G46 Axis offset single decrease M    
G47 Axis offset double increase M    
G48 Axis offset double decrease M    
G49 Tool length offset compensation cancel M   Cancels G43 or G44.
G50 Define the maximum spindle speed   T Takes an S address integer which is interpreted as rpm. Without this feature, G96 mode (CSS) would rev the spindle to "wide open throttle" when closely approaching the axis of rotation.
G50 Scaling function cancel M    
G50 Position register (programming of vector from part zero to tool tip)   T Position register is one of the original methods to relate the part (program) coordinate system to the tool position, which indirectly relates it to the machine coordinate system, the only position the control really "knows". Not commonly programmed anymore because G54 to G59 (WCSs) are a better, newer method. Called via G50 for turning, G92 for milling. Those G addresses also have alternate meanings (which see). Position register can still be useful for datum shift programming.
G52 Local coordinate system (LCS) M   Temporarily shifts program zero to a new location. This simplifies programming in some cases.
G53 Machine coordinate system M T Takes absolute coordinates (X,Y,Z,A,B,C) with reference to machine zero rather than program zero. Can be helpful for tool changes. Nonmodal and absolute only. Subsequent blocks are interpreted as "back to G54" even if it is not explicitly programmed.
G54 to G59 Work coordinate systems (WCSs) M T Have largely replaced position register (G50 and G92). Each tuple of axis offsets relates program zero directly to machine zero. Standard is 6 tuples (G54 to G59), with optional extensibility to 48 more via G54.1 P1 to P48.
G54.1 P1 to P48 Extended work coordinate systems M T Up to 48 more WCSs besides the 6 provided as standard by G54 to G59. Note floating-point extension of G-code data type (formerly all integers). Other examples have also evolved (e.g., G84.2). Modern controls have the hardware to handle it.
G70 Fixed cycle, multiple repetitive cycle, for finishing (including contours)   T  
G71 Fixed cycle, multiple repetitive cycle, for roughing (Z-axis emphasis)   T  
G72 Fixed cycle, multiple repetitive cycle, for roughing (X-axis emphasis)   T  
G73 Fixed cycle, multiple repetitive cycle, for roughing, with pattern repetition   T  
G73 Peck drilling cycle for milling - high-speed (NO full retraction from pecks) M   Retracts only as far as a clearance increment (system parameter). For when chipbreaking is the main concern, but chip clogging of flutes is not.
G74 Peck drilling cycle for turning   T  
G74 Tapping cycle for milling, lefthand thread, M04 spindle direction M    
G75 Peck grooving cycle for turning   T  
G76 Fine boring cycle for milling M    
G76 Threading cycle for turning, multiple repetitive cycle   T  
G80 Cancel canned cycle M T Milling: Cancels all cycles such as G73, G83, G88, etc. Z-axis returns either to Z-initial level or R-level, as programmed (G98 or G99, respectively).
Turning: Usually not needed on lathes, because a new group-1 G address (G00 to G03) cancels whatever cycle was active.
G81 Simple drilling cycle M   No dwell built in
G82 Drilling cycle with dwell M   Dwells at hole bottom (Z-depth) for the number of milliseconds specified by the P address. Good for when hole bottom finish matters.
G83 Peck drilling cycle (full retraction from pecks) M   Returns to R-level after each peck. Good for clearing flutes of chips.
G84 Tapping cycle, righthand thread, M03 spindle direction M    
G84.2 Tapping cycle, righthand thread, M03 spindle direction, rigid toolholder M    
G90 Absolute programming M T (B) Positioning defined with reference to part zero.
Milling: Always as above.
Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), G90/G91 are not used for absolute/incremental modes. Instead, U and W are the incremental addresses and X and Z are the absolute addresses. On these lathes, G90 is instead a fixed cycle address for roughing.
G90 Fixed cycle, simple cycle, for roughing (Z-axis emphasis)   T (A) When not serving for absolute programming (above)
G91 Incremental programming M T (B) Positioning defined with reference to previous position.
Milling: Always as above.
Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), G90/G91 are not used for absolute/incremental modes. Instead, U and W are the incremental addresses and X and Z are the absolute addresses. On these lathes, G90 is a fixed cycle address for roughing.
G92 Position register (programming of vector from part zero to tool tip) M T (B) Same corollary info as at G50 position register.
Milling: Always as above.
Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), position register is G50.
G92 Threading cycle, simple cycle   T (A)  
G94 Feedrate per minute M T (B) On group type A lathes, feedrate per minute is G98.
G94 Fixed cycle, simple cycle, for roughing (X-axis emphasis)   T (A) When not serving for feedrate per minute (above)
G95 Feedrate per revolution M T (B) On group type A lathes, feedrate per revolution is G99.
G96 Constant surface speed (CSS)   T Varies spindle speed automatically to achieve a constant surface speed. See speeds and feeds. Takes an S address integer, which is interpreted as sfm in G20 mode or as m/min in G21 mode.
G97 Constant spindle speed M T Takes an S address integer, which is interpreted as rev/min (rpm). The default speed mode per system parameter if no mode is programmed.
G98 Return to initial Z level in canned cycle M    
G98 Feedrate per minute (group type A)   T (A) Feedrate per minute is G94 on group type B.
G99 Return to R level in canned cycle M    
G99 Feedrate per revolution (group type A)   T (A) Feedrate per revolution is G95 on group type B.

List of M-codes commonly found on Fanuc and similarly designed controls

Sources: Smid; Green et al.

Code   Description Milling
( M )
Turning
( T )
Corollary info
M00 Compulsory stop M T Non-optional—machine will always stop upon reaching M00 in the program execution.
M01 Optional stop M T Machine will only stop at M01 if operator has pushed the optional stop button.
M02 End of program M T No return to program top; may or may not reset register values.
M03 Spindle on (clockwise rotation) M T The speed of the spindle is determined by the address S, in either revolutions per minute (G97 mode; default) or surface feet per minute or meters per minute (G96 mode under either G20 or G21). The right-hand rule can be used to determine which direction is clockwise and which direction is counter-clockwise.

Right-hand-helix screws moving in the tightening direction (and right-hand-helix flutes spinning in the cutting direction) are defined as moving in the M03 direction, and are labeled "clockwise" by convention. The M03 direction is always M03 regardless of local vantage point and local CW/CCW distinction.

M04 Spindle on (counterclockwise rotation) M T See comment above at M03.
M05 Spindle stop M T  
M06 Automatic tool change (ATC) M T (some-times) Many lathes do not use M06 because the T address itself indexes the turret.
Programming on any particular machine tool requires knowing which method that machine uses. To understand how the T address works and how it interacts (or not) with M06, one must study the various methods, such as lathe turret programming, ATC fixed tool selection, ATC random memory tool selection, the concept of "next tool waiting", and empty tools. These concepts are taught in textbooks such as Smid, and online multimedia (videos, simulators, etc); all of these teaching resources are usually paywalled to pay back the costs of their development. They are used in training classes for operators, both on-site and remotely (e.g., Tooling University).
M07 Coolant on (mist) M T  
M08 Coolant on (flood) M T  
M09 Coolant off M T  
M10 Pallet clamp on M   For machining centers with pallet changers
M11 Pallet clamp off M   For machining centers with pallet changers
M13 Spindle on (clockwise rotation) and coolant on (flood) M   This one M-code does the work of both M03 and M08. It is not unusual for specific machine models to have such combined commands, which make for shorter, more quickly written programs.
M19 Spindle orientation M T Spindle orientation is more often called within cycles (automatically) or during setup (manually), but it is also available under program control via M19. The abbreviation OSS (oriented spindle stop) may be seen in reference to an oriented stop within cycles.

The relevance of spindle orientation has increased as technology has advanced. Although 4- and 5-axis contour milling and CNC single-pointing have depended on spindle position encoders for decades, before the advent of widespread live tooling and mill-turn/turn-mill systems, it was seldom relevant in "regular" (non-"special") machining for the operator (as opposed to the machine) to know the angular orientation of a spindle except for within a few restricted contexts (such as tool change, or G76 fine boring cycles with choreographed tool retraction). Most milling of features indexed around a turned workpiece was accomplished with separate operations on indexing head setups; in a sense, indexing heads were invented as separate pieces of equipment, to be used in separate operations, which could provide precise spindle orientation in a world where it otherwise mostly didn't exist (and didn't need to). But as CAD/CAM and multiaxis CNC machining with multiple rotary-cutter axes becomes the norm, even for "regular" (non-"special") applications, machinists now frequently care about stepping just about any spindle through its 360° with precision.

M21 Mirror, X-axis M    
M21 Tailstock forward   T  
M22 Mirror, Y-axis M    
M22 Tailstock backward   T  
M23 Mirror OFF M    
M23 Thread gradual pullout ON   T  
M24 Thread gradual pullout OFF   T  
M30 End of program with return to program top M T  
M41 Gear select - gear 1   T  
M42 Gear select - gear 2   T  
M43 Gear select - gear 3   T  
M44 Gear select - gear 4   T  
M48 Feedrate override allowed M T  
M49 Feedrate override NOT allowed M T This rule is also called (automatically) within tapping cycles or single-point threading cycles, where feed is precisely correlated to speed. Same with spindle speed override and feed hold button.
M52 Unload Last tool from spindle M T Also empty spindle.
M60 Automatic pallet change (APC) M   For machining centers with pallet changers
M98 Subprogram call M T Takes an address P to specify which subprogram to call, for example, "M98 P8979" calls subprogram O8979.
M99 Subprogram end M T Usually placed at end of subprogram, where it returns execution control to the main program. The default is that control returns to the block following the M98 call in the main program. Return to a different block number can be specified by a P address. M99 can also be used in main program with block skip for endless loop of main program on bar work on lathes (until operator toggles block skip).

Example program

Tool Path for program

This is a generic program that demonstrates the use of G-Code to turn a 1" diameter X 1" long part. Assume that a bar of material is in the machine and that the bar is slightly oversized in length and diameter and that the bar protrudes by more than 1" from the face of the chuck. (Caution: This is generic, it might not work on any real machine! Pay particular attention to point 5 below.)

Sample
Line Code Description
%
O4968 (Sample face and turn program)
N01 M216 (Turn on load monitor)
N02 G20 G90 G54 D200 G40 (Inch units. Absolute mode. Call work offset values. Moving coordinate system to the location specified in the register D200. Cancel any existing tool radius offset.)
N03 G50 S2000 (Set maximum spindle speed rev/min - preparing for G96 CSS coming soon)
N04 M01 (Optional stop)
N05 T0300 (Index turret to tool 3. Clear wear offset (00).)
N06 G96 S854 M42 M03 M08 (Constant surface speed , 854 sfm, select spindle gear, start spindle CW rotation, turn on the coolant flood)
N07 G41 G00 X1.1 Z1.1 T0303 (Call tool radius offset. Call tool wear offset. Rapid feed to a point about 0.100" from the end of the bar and 0.050" from the side)
N08 G01 Z1.0 F.05 (Feed in horizontally until the tool is standing 1" from the datum i.e. program Z-zero)
N09 X-0.002 (Feed down until the tool is slightly past center, thus facing the end of the bar)
N10 G00 Z1.1 (Rapid feed 0.1" away from the end of the bar - clear the part)
N11 X1.0 (Rapid feed up until the tool is standing at the finished OD)
N12 G01 Z0.0 F.05 (Feed in horizontally cutting the bar to 1" diameter all the way to the datum, feeding at 0.050" per revolution)
N13 G00 X1.1 M05 M09 (Clear the part, stop the spindle, turn off the coolant)
N14 G91 G28 X0 (Home X axis - return to machine X-zero passing through no intermediate X point )
N15 G91 G28 Z0 (Home Z axis - return to machine Z-zero passing through no intermediate Z point )
N16 G90 M215 (Return to absolute mode. Turn off load monitor)
N17 M30 (Program stop, rewind to beginning of program)
%

Several points to note:

  1. There is room for some programming style, even in this short program. The grouping of codes in line N06 could have been put on multiple lines. Doing so may have made it easier to follow program execution.
  2. Many codes are "modal", meaning that they stay in effect until they are cancelled or replaced by a contradictory code. For example, once variable speed cutting (CSS) had been selected (G96), it stayed in effect until the end of the program. In operation, the spindle speed would increase as the tool neared the center of the work in order to maintain a constant surface speed. Similarly, once rapid feed was selected (G00), all tool movements would be rapid until a feed rate code (G01, G02, G03) was selected.
  3. It is common practice to use a load monitor with CNC machinery. The load monitor will stop the machine if the spindle or feed loads exceed a preset value that is set during the set-up operation. The jobs of the load monitor are various:
    1. Prevent machine damage in the event of tool breakage or a programming mistake.
      1. This is especially important because it allows safe "lights-out machining", in which the operators set up the job and start it running during the day, then go home for the night, leaving the machines running and cutting parts during the night. Because no human is around to hear, see, or smell a problem such as a broken tool, the load monitor serves an important sentry duty. When it senses overload condition, which semantically suggests a dull or broken tool, it commands a stop to the machining. Technology is available nowadays to send an alert to someone remotely (e.g., the sleeping owner, operator, or owner-operator) if desired, which can allow them to come intercede and get production going again, then leave once more. This can be the difference between profitability or loss on some jobs, because lights-out machining reduces labor hours per part.
    2. Warn of a tool that is becoming dull and needs to be replaced or sharpened. Thus an operator who is busy tending multiple machines will be told by a machine, essentially, "Hey, pause what you're doing over there, and come attend to a need over here."
  4. It is common practice to bring the tool in rapidly to a "safe" point that is close to the part - in this case 0.1" away - and then start feeding the tool. How close that "safe" distance is, depends on the skill of the programmer and maximum material condition for the raw stock.
  5. If the program is wrong, there is a high probability that the machine will crash, or ram the tool into the part under high power. This can be costly, especially in newer machining centers. It is possible to intersperse the program with optional stops (M01 code) which allow the program to be run piecemeal for testing purposes. The optional stops remain in the program but they are skipped during the normal running of the machine. Fortunately, most CAD/CAM software ships with CNC simulators that will display the movement of the tool as the program executes. Many modern CNC machines also allow programmers to execute the program in a simulation mode and observe the operating parameters of the machine at a particular execution point. This enables programmers to discover semantic errors (as opposed to syntax errors) before losing material or tools to an incorrect program. Depending on the size of the part, wax blocks may be used for testing purposes as well.
  6. For pedagogical purposes, line numbers have been included in the program above. They are usually not necessary for operation of a machine, so they are seldom used in industry. However, if branching or looping statements are used in the code, then line numbers may well be included as the target of those statements (e.g. GOTO N99).
  7. Some machines do not allow multiple M codes in the same line.

Programming environments

G-code's programming environments have evolved in parallel with those of general programming—from the earliest environments (e.g., writing a program with a pencil, typing it into a tape puncher) to the latest environments that stack CAD (computer-aided design), CAM (computer-aided manufacturing), and richly featured G-code editors. (G-code editors are analogous to XML editors, using colors and indents semantically to aid the user in ways that basic text editors can't. CAM packages are analogous to IDEs in general programming.)

Two high-level paradigm shifts have been (1) abandoning "manual programming" (with nothing but a pencil or text editor and a human mind) for CAM software systems that generate G-code automatically via postprocessors (analogous to the development of visual techniques in general programming), and (2) abandoning hardcoded constructs for parametric ones (analogous to the difference in general programming between hardcoding a constant into an equation versus declaring it a variable and assigning new values to it at will; and to the object-oriented approach in general). Macro (parametric) CNC programming uses human-friendly variable names, relational operators, and loop structures much as general programming does, to capture information and logic with machine-readable semantics. Whereas older manual CNC programming could only describe particular instances of parts in numeric form, parametric CAM programming describes abstractions which can be flowed with ease into a wide variety of instances. The difference has many analogues, both from before the computing era and from after its advent, such as (1) creating text as bitmaps versus using character encoding with glyphs; (2) the abstraction level of tabulated engineering drawings, with many part dash numbers parametrically defined by the one same drawing and a parameter table; or (3) the way that HTML passed through a phase of using content markup for presentation purposes, then matured toward the CSS model. In all of these cases, a higher layer of abstraction was introduced in order to pursue what was missing semantically.

STEP-NC reflects the same theme, which can be viewed as yet another step along a path that started with the development of machine tools, jigs and fixtures, and numerical control, which all sought to "build the skill into the tool". Recent developments of G-code and STEP-NC aim to build the information and semantics into the tool. The idea itself is not new; from the beginning of numerical control, the concept of an end-to-end CAD/CAM environment was the goal of such early technologies as DAC-1 and APT. Those efforts were fine for huge corporations like GM and Boeing. However, for small and medium enterprises, there had to be an era in which the simpler implementations of NC, with relatively primitive "connect-the-dots" G-code and manual programming, ruled the day until CAD/CAM could improve and disseminate throughout the economy.

Any machine tool with a great number of axes, spindles, and tool stations is difficult to program well manually. It has been done over the years, but not easily. This challenge has existed for decades in CNC screw machine and rotary transfer programming, and it now also arises with today's newer machining centers called "turn-mills", "mill-turns", "multitasking machines", and "multifunction machines". Now that CAD/CAM systems are widely used, CNC programming (such as with G-code) requires CAD/CAM (as opposed to manual programming) to be practical and competitive in the market segments served by these classes of machines. As Smid says, "Combine all these axes with some additional features, and the amount of knowledge required to succeed is quite overwhelming, to say the least." At the same time, however, programmers still must thoroughly understand the principles of manual programming and must think critically and second-guess some aspects of the software's decisions.

The neutrality of this section is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (November 2011) (Learn how and when to remove this message)

Since about the mid-2000s, the era has finally arrived when conventional wisdom, among the hasty or incompletely informed, has begun to declare the death of manual programming (writing lines of G-code without CAM assistance). In this view, manual programming is a thing of the past. However, this is clearly not accurate; although it is true that plenty of programming can and does take place nowadays among people who are rusty on, or incapable of, manual programming, it is not true that all CNC programming can be done, or done well or efficiently, without being able to speak the language of G-code. Tayloring and refining the CNC program at the machine is one of the main reasons—someone who knows G-code well has a real advantage over someone who must send the whole program back to CAM, explain what's needed (and why) to the CAM user, and hope that the CAM user even has adequate machining knowledge to know how to make the right tweaks.

Etymology

Students and hobbyists have pointed out over the years that the term "G-code" referring to the language overall (using the mass sense of "code") is imprecise. It comes metonymically from the literal sense of the term, referring to one letter address among many in the language (G address, for preparatory commands) and to the specific codes (count sense) that can be formed with it (for example, G00, G01, G28). But every letter of the English alphabet is used somewhere in the language (although some letters' use is less common), so the name seems unfitting to people searching for strictly logical etymology. Nevertheless, the general sense of the term is indelibly established as the common name of the language.

The resistance among some users to the name "G programming language" may come from the fact that historically G-code was not a "language" in the same sense that C++ or Java are—that is, high-level programming languages. However, G-code has by now been extended to the point that it can function as a high-level language, so the objection, to the extent that it still exists, rests now only on what people grew used to hearing in decades past.

See also

Extended developments

Similar concepts

Concerns during application

References

  1. ^ Smid 2008.
  2. ^ Green 1996, pp. 1162–1226 harvnb error: no target: CITEREFGreen1996 (help).
  3. MMS editorial staff (2010-12-20), "CAM system simplifies Swiss-type lathe programming", Modern Machine Shop, 83 (8 ): 100–105. Online ahead of print.{{citation}}: CS1 maint: postscript (link)
  4. Smid 2008, p. 457.
  5. Lynch, Mike (2010-01-18), "When programmers should know G code", Modern Machine Shop (online ed.). {{citation}}: Invalid |ref=harv (help)
  6. Lynch, Mike (2011-10-19), "Five CNC myths and misconceptions [CNC Tech Talk column, Editor's Commentary]", Modern Machine Shop (online ed.). {{citation}}: Invalid |ref=harv (help)

Bibliography

External links

Metalworking
Machining and computing
Computer-aided
engineering
Drilling and
threading
Grinding and
lapping
Machining
Machine tools
Terminology
Categories:
G-code: Difference between revisions Add topic