Revision as of 08:33, 28 November 2012 editDouble sharp (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, File movers, Pending changes reviewers102,066 editsNo edit summary← Previous edit |
Revision as of 08:34, 28 November 2012 edit undoDouble sharp (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, File movers, Pending changes reviewers102,066 editsNo edit summaryNext edit → |
Line 3: |
Line 3: |
|
If it were possible to produce sufficient quantities of sufficiently long-lived isotopes of these elements that would allow the study of their chemistry, these elements may well behave very differently from those of previous periods. This is because their ]s may be altered by ] and ] effects, as the energy levels of the 5g, 6f, 7d and 8p<sub>1/2</sub> ] are so close to each other that they may well exchange electrons with each other.<ref>{{cite doi|10.1063/1.1672054}}</ref> This would result in a large number of elements in the ] series that would have extremely similar chemical properties that would be quite unrelated to elements of lower atomic number.<ref name="Fricke"/> |
|
If it were possible to produce sufficient quantities of sufficiently long-lived isotopes of these elements that would allow the study of their chemistry, these elements may well behave very differently from those of previous periods. This is because their ]s may be altered by ] and ] effects, as the energy levels of the 5g, 6f, 7d and 8p<sub>1/2</sub> ] are so close to each other that they may well exchange electrons with each other.<ref>{{cite doi|10.1063/1.1672054}}</ref> This would result in a large number of elements in the ] series that would have extremely similar chemical properties that would be quite unrelated to elements of lower atomic number.<ref name="Fricke"/> |
|
|
|
|
|
⚫ |
==History== |
|
⚫ |
There are currently seven ]s in the ] of ], culminating with ] 118. If further elements with higher atomic numbers than this are discovered, they will be placed in additional periods, laid out (as with the existing periods) to illustrate periodically recurring trends in the properties of the elements concerned. Any additional periods are expected to contain a larger number of elements than the seventh period, as they are calculated to contain elements with filled g-]s in their ground state. An eight-period table containing these elements was suggested by ] in 1969.<ref name="LBNL">{{ cite web |url=http://www.lbl.gov/LBL-PID/Nobelists/Seaborg/65th-anniv/29.html |title= An Early History of LBNL |first=Glenn |last=Seaborg |date=August 26, 1996}}</ref><ref>{{cite journal | doi = 10.2307/3963006 | last1 = Frazier | first1 = K. | title = Superheavy Elements | journal = Science News | volume = 113 | issue = 15 | pages = 236–238 | year = 1978 | jstor = 3963006}}</ref> No elements in this region have been synthesized or discovered in nature. While Seaborg's version of the extended period had the heavier elements following the pattern set by lighter elements, as it did not take into account ], models that take relativistic effects into account do not. ] and B. Fricke used computer modeling to calculate the positions of elements up to '']'' = 172 (comprising periods 8 and ]), and found that several were displaced from the Madelung rule.<ref name="rsc.org">{{Cite web |url=http://www.rsc.org/Publishing/ChemScience/Volume/2010/11/Extended_elements.asp |title=Extended elements: new periodic table |year=2010}}</ref><ref name="Fricke">{{cite journal |last1=Fricke |first1=B. |last2=Greiner |first2=W. |last3=Waber |first3=J. T. |year=1971 |title=The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements |journal=Theoretica chimica acta |volume=21 |issue=3 |pages=235–260 |publisher=Springer-Verlag |doi=10.1007/BF01172015 |url=http://link.springer.com/article/10.1007%2FBF01172015?LI=true# |accessdate=28 November 2012}}</ref> Fricke predicted the structure of the extended periodic table up to ''Z'' = 172 to be: |
|
{{Compact extended periodic table}} |
|
{{Compact extended periodic table}} |
|
|
|
⚫ |
==History== |
|
⚫ |
There are currently seven ]s in the ] of ], culminating with ] 118. If further elements with higher atomic numbers than this are discovered, they will be placed in additional periods, laid out (as with the existing periods) to illustrate periodically recurring trends in the properties of the elements concerned. Any additional periods are expected to contain a larger number of elements than the seventh period, as they are calculated to contain elements with filled g-]s in their ground state. An eight-period table containing these elements was suggested by ] in 1969.<ref name="LBNL">{{ cite web |url=http://www.lbl.gov/LBL-PID/Nobelists/Seaborg/65th-anniv/29.html |title= An Early History of LBNL |first=Glenn |last=Seaborg |date=August 26, 1996}}</ref><ref>{{cite journal | doi = 10.2307/3963006 | last1 = Frazier | first1 = K. | title = Superheavy Elements | journal = Science News | volume = 113 | issue = 15 | pages = 236–238 | year = 1978 | jstor = 3963006}}</ref> No elements in this region have been synthesized or discovered in nature. While Seaborg's version of the extended period had the heavier elements following the pattern set by lighter elements, as it did not take into account ], models that take relativistic effects into account do not. ] and B. Fricke used computer modeling to calculate the positions of elements up to '']'' = 172 (comprising periods 8 and ]), and found that several were displaced from the Madelung rule.<ref name="rsc.org">{{Cite web |url=http://www.rsc.org/Publishing/ChemScience/Volume/2010/11/Extended_elements.asp |title=Extended elements: new periodic table |year=2010}}</ref><ref name="Fricke">{{cite journal |last1=Fricke |first1=B. |last2=Greiner |first2=W. |last3=Waber |first3=J. T. |year=1971 |title=The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements |journal=Theoretica chimica acta |volume=21 |issue=3 |pages=235–260 |publisher=Springer-Verlag |doi=10.1007/BF01172015 |url=http://link.springer.com/article/10.1007%2FBF01172015?LI=true# |accessdate=28 November 2012}}</ref> |
|
|
|
|
|
|
==Predicted properties== |
|
==Predicted properties== |
Line 31: |
Line 30: |
|
<!-- footers --> |
|
<!-- footers --> |
|
{{PeriodicTablesFooter}} |
|
{{PeriodicTablesFooter}} |
|
{{Compact extended periodic table}} |
|
|
|
|
|
|
{{DEFAULTSORT:Period 8 Element}} |
|
{{DEFAULTSORT:Period 8 Element}} |
If it were possible to produce sufficient quantities of sufficiently long-lived isotopes of these elements that would allow the study of their chemistry, these elements may well behave very differently from those of previous periods. This is because their electronic configurations may be altered by quantum and relativistic effects, as the energy levels of the 5g, 6f, 7d and 8p1/2 orbitals are so close to each other that they may well exchange electrons with each other. This would result in a large number of elements in the superactinide series that would have extremely similar chemical properties that would be quite unrelated to elements of lower atomic number.