Misplaced Pages

Period 8 element: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 08:33, 28 November 2012 editDouble sharp (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, File movers, Pending changes reviewers102,066 editsNo edit summary← Previous edit Revision as of 08:34, 28 November 2012 edit undoDouble sharp (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, File movers, Pending changes reviewers102,066 editsNo edit summaryNext edit →
Line 3: Line 3:
If it were possible to produce sufficient quantities of sufficiently long-lived isotopes of these elements that would allow the study of their chemistry, these elements may well behave very differently from those of previous periods. This is because their ]s may be altered by ] and ] effects, as the energy levels of the 5g, 6f, 7d and 8p<sub>1/2</sub> ] are so close to each other that they may well exchange electrons with each other.<ref>{{cite doi|10.1063/1.1672054}}</ref> This would result in a large number of elements in the ] series that would have extremely similar chemical properties that would be quite unrelated to elements of lower atomic number.<ref name="Fricke"/> If it were possible to produce sufficient quantities of sufficiently long-lived isotopes of these elements that would allow the study of their chemistry, these elements may well behave very differently from those of previous periods. This is because their ]s may be altered by ] and ] effects, as the energy levels of the 5g, 6f, 7d and 8p<sub>1/2</sub> ] are so close to each other that they may well exchange electrons with each other.<ref>{{cite doi|10.1063/1.1672054}}</ref> This would result in a large number of elements in the ] series that would have extremely similar chemical properties that would be quite unrelated to elements of lower atomic number.<ref name="Fricke"/>


==History==
There are currently seven ]s in the ] of ], culminating with ] 118. If further elements with higher atomic numbers than this are discovered, they will be placed in additional periods, laid out (as with the existing periods) to illustrate periodically recurring trends in the properties of the elements concerned. Any additional periods are expected to contain a larger number of elements than the seventh period, as they are calculated to contain elements with filled g-]s in their ground state. An eight-period table containing these elements was suggested by ] in 1969.<ref name="LBNL">{{ cite web |url=http://www.lbl.gov/LBL-PID/Nobelists/Seaborg/65th-anniv/29.html |title= An Early History of LBNL |first=Glenn |last=Seaborg |date=August 26, 1996}}</ref><ref>{{cite journal | doi = 10.2307/3963006 | last1 = Frazier | first1 = K. | title = Superheavy Elements | journal = Science News | volume = 113 | issue = 15 | pages = 236–238 | year = 1978 | jstor = 3963006}}</ref> No elements in this region have been synthesized or discovered in nature. While Seaborg's version of the extended period had the heavier elements following the pattern set by lighter elements, as it did not take into account ], models that take relativistic effects into account do not. ] and B. Fricke used computer modeling to calculate the positions of elements up to '']'' = 172 (comprising periods 8 and ]), and found that several were displaced from the Madelung rule.<ref name="rsc.org">{{Cite web |url=http://www.rsc.org/Publishing/ChemScience/Volume/2010/11/Extended_elements.asp |title=Extended elements: new periodic table |year=2010}}</ref><ref name="Fricke">{{cite journal |last1=Fricke |first1=B. |last2=Greiner |first2=W. |last3=Waber |first3=J. T. |year=1971 |title=The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements |journal=Theoretica chimica acta |volume=21 |issue=3 |pages=235–260 |publisher=Springer-Verlag |doi=10.1007/BF01172015 |url=http://link.springer.com/article/10.1007%2FBF01172015?LI=true# |accessdate=28 November 2012}}</ref> Fricke predicted the structure of the extended periodic table up to ''Z'' = 172 to be:
{{Compact extended periodic table}} {{Compact extended periodic table}}

==History==
There are currently seven ]s in the ] of ], culminating with ] 118. If further elements with higher atomic numbers than this are discovered, they will be placed in additional periods, laid out (as with the existing periods) to illustrate periodically recurring trends in the properties of the elements concerned. Any additional periods are expected to contain a larger number of elements than the seventh period, as they are calculated to contain elements with filled g-]s in their ground state. An eight-period table containing these elements was suggested by ] in 1969.<ref name="LBNL">{{ cite web |url=http://www.lbl.gov/LBL-PID/Nobelists/Seaborg/65th-anniv/29.html |title= An Early History of LBNL |first=Glenn |last=Seaborg |date=August 26, 1996}}</ref><ref>{{cite journal | doi = 10.2307/3963006 | last1 = Frazier | first1 = K. | title = Superheavy Elements | journal = Science News | volume = 113 | issue = 15 | pages = 236–238 | year = 1978 | jstor = 3963006}}</ref> No elements in this region have been synthesized or discovered in nature. While Seaborg's version of the extended period had the heavier elements following the pattern set by lighter elements, as it did not take into account ], models that take relativistic effects into account do not. ] and B. Fricke used computer modeling to calculate the positions of elements up to '']'' = 172 (comprising periods 8 and ]), and found that several were displaced from the Madelung rule.<ref name="rsc.org">{{Cite web |url=http://www.rsc.org/Publishing/ChemScience/Volume/2010/11/Extended_elements.asp |title=Extended elements: new periodic table |year=2010}}</ref><ref name="Fricke">{{cite journal |last1=Fricke |first1=B. |last2=Greiner |first2=W. |last3=Waber |first3=J. T. |year=1971 |title=The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements |journal=Theoretica chimica acta |volume=21 |issue=3 |pages=235–260 |publisher=Springer-Verlag |doi=10.1007/BF01172015 |url=http://link.springer.com/article/10.1007%2FBF01172015?LI=true# |accessdate=28 November 2012}}</ref>


==Predicted properties== ==Predicted properties==
Line 31: Line 30:
<!-- footers --> <!-- footers -->
{{PeriodicTablesFooter}} {{PeriodicTablesFooter}}
{{Compact extended periodic table}}


{{DEFAULTSORT:Period 8 Element}} {{DEFAULTSORT:Period 8 Element}}

Revision as of 08:34, 28 November 2012

A period 8 element is any one of 46 hypothetical chemical elements (ununennium through unhexquadium) belonging to an eighth period of the periodic table of the elements. They may be referred to using IUPAC systematic element names. None of these elements have been synthesized, and it is possible that none have isotopes with stable enough nuclei to receive significant attention in the near future. It is also probable that, due to drip instabilities, only the lower period 8 elements are physically possible and the periodic table may end soon after the island of stability at unbihexium with atomic number 126. The names given to these unattested elements are all IUPAC systematic names.

If it were possible to produce sufficient quantities of sufficiently long-lived isotopes of these elements that would allow the study of their chemistry, these elements may well behave very differently from those of previous periods. This is because their electronic configurations may be altered by quantum and relativistic effects, as the energy levels of the 5g, 6f, 7d and 8p1/2 orbitals are so close to each other that they may well exchange electrons with each other. This would result in a large number of elements in the superactinide series that would have extremely similar chemical properties that would be quite unrelated to elements of lower atomic number.

History

There are currently seven periods in the periodic table of chemical elements, culminating with atomic number 118. If further elements with higher atomic numbers than this are discovered, they will be placed in additional periods, laid out (as with the existing periods) to illustrate periodically recurring trends in the properties of the elements concerned. Any additional periods are expected to contain a larger number of elements than the seventh period, as they are calculated to contain elements with filled g-orbitals in their ground state. An eight-period table containing these elements was suggested by Glenn T. Seaborg in 1969. No elements in this region have been synthesized or discovered in nature. While Seaborg's version of the extended period had the heavier elements following the pattern set by lighter elements, as it did not take into account relativistic effects, models that take relativistic effects into account do not. Pekka Pyykkö and B. Fricke used computer modeling to calculate the positions of elements up to Z = 172 (comprising periods 8 and 9), and found that several were displaced from the Madelung rule. Fricke predicted the structure of the extended periodic table up to Z = 172 to be:

Extended periodic table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
119 120 3 asterisks 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
3 asterisks 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
s-block g-block f-block d-block p-block

Predicted properties

8s elements

Superactinides

Transition metals

Synthesis

This section is empty. You can help by adding to it. (November 2012)

See also

Notes

  1. The heaviest element that has been synthesized to date is ununoctium with atomic number 118, which is the last period 7 element.

References

  1. Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. ISBN 978-0-19-960563-7.
  2. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1063/1.1672054, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1063/1.1672054 instead.
  3. ^ Fricke, B.; Greiner, W.; Waber, J. T. (1971). "The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements". Theoretica chimica acta. 21 (3). Springer-Verlag: 235–260. doi:10.1007/BF01172015. Retrieved 28 November 2012.
  4. Seaborg, Glenn (August 26, 1996). "An Early History of LBNL".
  5. Frazier, K. (1978). "Superheavy Elements". Science News. 113 (15): 236–238. doi:10.2307/3963006. JSTOR 3963006.
  6. "Extended elements: new periodic table". 2010.
Periodic table
Periodic table forms
Sets of elements
By periodic table structure
Groups
Periods
Blocks
By metallicity
Metals
Metalloids
Nonmetals
Other sets
Elements
Lists
Properties
Data pages
History
See also
Categories: