Revision as of 14:44, 21 August 2014 editRoxy the dog (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers34,212 edits Reverted 1 good faith edit by 196.21.61.234 using STiki← Previous edit | Revision as of 03:55, 3 September 2014 edit undoJaronie (talk | contribs)60 edits →TypesNext edit → | ||
Line 23: | Line 23: | ||
===Electric=== | ===Electric=== | ||
An electric actuator is powered by a motor that converts electrical energy to mechanical torque. The electrical energy is used to actuate equipment such as multi-turn valves. It is one of the cleanest and most readily available forms of actuator because it does not involve oil. | An electric actuator is powered by a motor that converts electrical energy to mechanical torque. The electrical energy is used to actuate equipment such as multi-turn valves. It is one of the cleanest and most readily available forms of actuator because it does not involve oil. | ||
Recently, new type of actuators which can be actuated by applying thermal or magnetic energy have drawn many interest and attention and in many commercial applications, due to their superior and unique properties <ref name=JMJ>{{cite doi|10.1016/j.matdes.2013.11.084}}</ref>. This actuators are using shape memory materials (SMMs), such as shape memory alloys (SMAs) or ferromagnetic shape memory alloys (FSMAs). | |||
===Mechanical=== | ===Mechanical=== |
Revision as of 03:55, 3 September 2014
An actuator is a type of motor that is responsible for moving or controlling a mechanism or system.
It is operated by a source of energy, typically electric current, hydraulic fluid pressure, or pneumatic pressure, and converts that energy into motion. An actuator is the mechanism by which a control system acts upon an environment. The control system can be simple (a fixed mechanical or electronic system), software-based (e.g. a printer driver, robot control system), a human, or any other input.
History
Some of the earliest forms of actuation can be found as far back as Archimedes, who lived approximately between the years 287 B.C., and 212 B.C. What became known as Archimedes' screw was one of the first linear actuators used to haul water from boats.
Other early actuation methods included mechanisms with wooden screws designed to crush grapes into wine and olives into oil.
Types
Hydraulic
A hydraulic actuator consists of a cylinder or fluid motor that uses hydraulic power to facilitate mechanical operation. The mechanical motion gives an output in terms of linear, rotary or oscillatory motion. Because liquid is nearly incompressible, a hydraulic actuator can exert considerable force, but is limited in acceleration and speed.
The hydraulic cylinder consists of a hollow cylindrical tube along which a piston can slide. The term double acting is used when pressure is applied on each side of the piston. A difference in pressure between the two side of the piston results in motion of piston to either side. The term single acting is used when the fluid pressure is applied to just one side of the piston. The piston can move in only one direction, a spring being frequently used to give the piston a return stroke.
Pneumatic
A pneumatic actuator converts energy formed by vacuum or compressed air at high pressure into either linear or rotary motion. Pneumatic energy is desirable for main engine controls because it can quickly respond in starting and stopping as the power source does not need to be stored in reserve for operation.
Pneumatic actuators enables large forces to be produced from relatively small pressure changes. These forces are often used with valves to move diaphragms and so affect the flow of liquid through the valve.
Electric
An electric actuator is powered by a motor that converts electrical energy to mechanical torque. The electrical energy is used to actuate equipment such as multi-turn valves. It is one of the cleanest and most readily available forms of actuator because it does not involve oil.
Recently, new type of actuators which can be actuated by applying thermal or magnetic energy have drawn many interest and attention and in many commercial applications, due to their superior and unique properties . This actuators are using shape memory materials (SMMs), such as shape memory alloys (SMAs) or ferromagnetic shape memory alloys (FSMAs).
Mechanical
A mechanical actuator functions by converting rotary motion into linear motion to execute movement. It involves gears, rails, pulleys, chains and other devices to operate. An example is a rack and pinion.
Examples and applications
In engineering, actuators are frequently used as mechanisms to introduce motion, or to clamp an object so as to prevent motion. In electronic engineering, actuators are a subdivision of transducers. They are devices which transform an input signal (mainly an electrical signal) into motion.
Examples of actuators
- Comb drive
- Digital micromirror device
- Electric motor
- Electroactive polymer
- Hydraulic piston
- Piezoelectric actuator
- Pneumatic actuator
- Relay
- Servomechanism
- Thermal bimorph
Circular to linear conversion
Motors are mostly used when circular motions are needed, but can also be used for linear applications by transforming circular to linear motion with a lead screw or similar mechanism. On the other hand, some actuators are intrinsically linear, such as piezoelectric actuators. Conversion between circular and linear motion is commonly made via a few simple types of mechanism including:
- Screw: Screw jack, ball screw and roller screw actuators all operate on the principle of the simple machine known as the screw. By rotating the actuator's nut, the screw shaft moves in a line. By moving the screw shaft, the nut rotates.
- Wheel and axle: Hoist, winch, rack and pinion, chain drive, belt drive, rigid chain and rigid belt actuators operate on the principle of the wheel and axle. By rotating a wheel/axle (e.g. drum, gear, pulley or shaft) a linear member (e.g. cable, rack, chain or belt) moves. By moving the linear member, the wheel/axle rotates.
Virtual instrumentation
In virtual instrumentation, actuators and sensors are the hardware complements of virtual instruments.
Performance metrics
Performance metrics for actuators include speed, acceleration, and force (alternatively, angular speed, angular acceleration, and torque), as well as energy efficiency and considerations such as mass, volume, operating conditions, and durability, among others.
Force
When considering force in actuators for applications, two main metrics should be considered. These two are static and dynamic loads. Static load is the force capability of the actuator while not in motion. Conversely, the dynamic load of the actuator is the force capability while in motion. The two aspects are rarely have the weight capability and must be considered separately.
Speed
Speed should be considered primarily at a no-load pace, since the speed will invariably decrease as the load amount increases. The rate the speed will decrease will directly correlate with the amount of force and the initial speed.
Operating conditions
Actuators are commonly rated using the standard IP Code rating system. Those that are rated for dangerous environments will have a higher IP rating than those for personal or common industrial use.
Durability
This will be determined by each individual manufacturer, depending on usage and quality.
See also
- End effector
- Hard disk drive actuator
- Linear actuator
- Load cell
- Microactuator
- Nanotube nanomotor
- Robot actuators
- Torque motor
References
- Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/j.matdes.2013.11.084, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1016/j.matdes.2013.11.084
instead. - Sclater, N., Mechanisms and Mechanical Devices Sourcebook, 4th Edition (2007), 25, McGraw-Hill
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Actuator" – news · newspapers · books · scholar · JSTOR (November 2010) (Learn how and when to remove this message) |