Revision as of 14:40, 15 September 2015 edit90.16.192.203 (talk) Add a Perl6 example← Previous edit | Revision as of 14:43, 15 September 2015 edit undo90.16.192.203 (talk) →Perl 6: Add a link to the metaobject protocol pageNext edit → | ||
Line 370: | Line 370: | ||
===Perl 6=== | ===Perl 6=== | ||
In Perl 6, you could wrap your mutators in methods which return the invocant, or you can take advantage of the meta-object protocol to write a new attribute trait to define an attribute as both read/write and returning the invocant. The following code does the latter. | In Perl 6, you could wrap your mutators in methods which return the invocant, or you can take advantage of the ] to write a new attribute trait to define an attribute as both read/write and returning the invocant. The following code does the latter. | ||
<source lang="perl6"> | <source lang="perl6"> |
Revision as of 14:43, 15 September 2015
In software engineering, a fluent interface (as first coined by Eric Evans and Martin Fowler) is an implementation of an object oriented API that aims to provide more readable code.
A fluent interface is normally implemented by using method cascading (concretely method chaining) to relay the instruction context of a subsequent call (but a fluent interface entails more than just method chaining ). Generally, the context is
- defined through the return value of a called method
- self-referential, where the new context is equivalent to the last context
- terminated through the return of a void context.
History
The term "fluent interface" was coined in late 2005, though this overall style of interface dates to the invention of method cascading in Smalltalk in the 1970s, and numerous examples in the 1980s. The most familiar is the iostream library in C++, which uses the <<
or >>
operators for the message passing, sending multiple data to the same object and allowing "manipulators" for other method calls. Other early examples include the Garnet system (from 1988 in Lisp) and the Amulet system (from 1994 in C++) which used this style for object creation and property assignment.
Examples
JavaScript
There are many examples of JS libraries that use some variant of this: jQuery probably being the most well known. Typically fluent builders are used to implement 'DB queries', for example in https://github.com/Medium/dynamite :
// getting an item from a table client.getItem('user-table') .setHashKey('userId', 'userA') .setRangeKey('column', '@') .execute() .then(function(data) { // data.result: the resulting object })
A simple way to do this in javascript is using prototype inheritance and `this`.
// example from http://schier.co/post/method-chaining-in-javascript // define the class var Kitten = function() { this.name = 'Garfield'; this.color = 'brown'; this.gender = 'male'; }; Kitten.prototype.setName = function(name) { this.name = name; return this; }; Kitten.prototype.setColor = function(color) { this.color = color; return this; }; Kitten.prototype.setGender = function(gender) { this.gender = gender; return this; }; Kitten.prototype.save = function() { console.log( 'saving ' + this.name + ', the ' + this.color + ' ' + this.gender + ' kitten...' ); // save to database here... return this; }; // use it new Kitten() .setName('Bob') .setColor('black') .setGender('male') .save();
A more general way to do this is implemented in mu-ffsm.
var mkChained = function(spec) { return function(init) { var s = spec ? spec(init) : 0; var i = function(opt) { return spec ? spec(s, opt) : s; } Object.keys(spec).forEach( function(name){ // skip `entry` and `exit` functions if(/^\d+$/.test(name)) return; // transition 'name : (s, opt) -> s' i = function(opt) { s = spec(s, opt); return i; }; }); return i; } }; var API = mkChained({ 0: function(opt) {return ;/* create initial state */}, then: function(s, opt) {return s; /* new state */}, whut: function(s, opt) {return s; /* new state */}, 1: function(s, opt) {return ;/* compute final value */} }); // We create an instance of our newly crafted API, var call = API() // entry .whut() // transition .then() // transition .whut(); // transition // And call it var result0 = call() // exit , result1 = call() // exit
Java
The jOOQ library models SQL as a fluent API in Java
Author a = AUTHOR.as("a"); create.selectFrom(a) .where(exists(selectOne() .from(BOOK) .where(BOOK.STATUS.eq(BOOK_STATUS.SOLD_OUT)) .and(BOOK.AUTHOR_ID.eq(a.ID))));
The op4j library enables the use of fluent code for performing auxiliary tasks like structure iteration, data conversion, filtering, etc.
String datesStr = new String {"12-10-1492", "06-12-1978"}; ... List<Calendar> dates = Op.on(datesStr).toList().map(FnString.toCalendar("dd-MM-yyyy")).get();
The fluflu annotation processor enables the creation of a fluent API using Java annotations.
The JaQue library enables Java 8 Lambdas to be represented as objects in the form of expression trees at runtime, making it possible to create type-safe fluent interfaces, i.e. instead of:
Customer obj = ... obj.property("name").eq("John")
One can write:
method<Customer>(customer -> customer.getName() == "John")
Also, the mock object testing library EasyMock makes extensive use of this style of interface to provide an expressive programming interface.
Collection mockCollection = EasyMock.createMock(Collection.class); EasyMock.expect(mockCollection.remove(null)).andThrow(new NullPointerException()).atLeastOnce();
In the Java Swing API, the LayoutManager interface defines how Container objects can have controlled Component placement. One of the more powerful LayoutManager implementations is the GridBagLayout class which requires the use of the GridBagConstraints class to specify how layout control occurs. A typical example of the use of this class is something like the following.
GridBagLayout gl = new GridBagLayout(); JPanel p = new JPanel(); p.setLayout( gl ); JLabel l = new JLabel("Name:"); JTextField nm = new JTextField(10); GridBagConstraints gc = new GridBagConstraints(); gc.gridx = 0; gc.gridy = 0; gc.fill = GridBagConstraints.NONE; p.add( l, gc ); gc.gridx = 1; gc.fill = GridBagConstraints.HORIZONTAL; gc.weightx = 1; p.add( nm, gc );
This creates a lot of code and makes it difficult to see what exactly is happening here. The Packer class, visible at http://java.net/projects/packer/, provides a Fluent mechanism for using this class so that you would instead write:
JPanel p = new JPanel(); Packer pk = new Packer( p ); JLabel l = new JLabel("Name:"); JTextField nm = new JTextField(10); pk.pack( l ).gridx(0).gridy(0); pk.pack( nm ).gridx(1).gridy(0).fillx();
There are many places where Fluent APIs can greatly simplify how software is written and help create an API language that helps users be much more productive and comfortable with the API because the return value of a method always provides a context for further actions in that context.
C++
A common use of the fluent interface in C++ is the standard iostream, which chains overloaded operators.
The following is an example of providing a fluent interface wrapper on top of a more traditional interface in C++:
// Basic definition class GlutApp { private: int w_, h_, x_, y_, argc_, display_mode_; char **argv_; char *title_; public: GlutApp(int argc, char** argv) { argc_ = argc; argv_ = argv; } void setDisplayMode(int mode) { display_mode_ = mode; } int getDisplayMode() { return display_mode_; } void setWindowSize(int w, int h) { w_ = w; h_ = h; } void setWindowPosition(int x, int y) { x_ = x; y_ = y; } void setTitle(const char *title) { title_ = title; } void create(){;} }; // Basic usage int main(int argc, char **argv) { GlutApp app(argc, argv); app.setDisplayMode(GLUT_DOUBLE|GLUT_RGBA|GLUT_ALPHA|GLUT_DEPTH); // Set framebuffer params app.setWindowSize(500, 500); // Set window params app.setWindowPosition(200, 200); app.setTitle("My OpenGL/GLUT App"); app.create(); } // Fluent wrapper class FluentGlutApp : private GlutApp { public: FluentGlutApp(int argc, char **argv) : GlutApp(argc, argv) {} // Inherit parent constructor FluentGlutApp &withDoubleBuffer() { setDisplayMode(getDisplayMode() | GLUT_DOUBLE); return *this; } FluentGlutApp &withRGBA() { setDisplayMode(getDisplayMode() | GLUT_RGBA); return *this; } FluentGlutApp &withAlpha() { setDisplayMode(getDisplayMode() | GLUT_ALPHA); return *this; } FluentGlutApp &withDepth() { setDisplayMode(getDisplayMode() | GLUT_DEPTH); return *this; } FluentGlutApp &across(int w, int h) { setWindowSize(w, h); return *this; } FluentGlutApp &at(int x, int y) { setWindowPosition(x, y); return *this; } FluentGlutApp &named(const char *title) { setTitle(title); return *this; } // It doesn't make sense to chain after create(), so don't return *this void create() { GlutApp::create(); } }; // Fluent usage int main(int argc, char **argv) { FluentGlutApp(argc, argv) .withDoubleBuffer().withRGBA().withAlpha().withDepth() .at(200, 200).across(500, 500) .named("My OpenGL/GLUT App") .create(); }
D
Because of the Uniform Function Call Syntax (UFCS) in D, method chaining is particularly easy. If you write
x.toInt();
and the type of x does not provide a toInt() member function, then the compiler looks for a free function of the form
toInt(x);
This enables chaining methods in a fluent way like this
x.toInt().toString(format);
instead of this
toString(toInt(x),format);
Ruby
The Ruby language allows modifications to core classes. This enables a programmer to implement fluent interfaces natively.
In Ruby strings are instances of a String class, by defining new methods to the String class which each returns strings, we natively allow chaining of methods. In the example below, we define three new methods: indent, prefix and suffix. Each returning a string and hence an instance of String that has the three defined methods.
# Add methods to String class class String def prefix(raw) "#{raw} #{self}" end def suffix(raw) "#{self} #{raw}" end def indent(raw) raw = " " * raw if raw.kind_of? Fixnum prefix(raw) end end # Fluent interface message = "there" puts message.prefix("hello") .suffix("world") .indent(8)
Scala
Scala supports a fluent syntax for both method calls and class mixins, using traits and the with keyword. For example:
class Color { def rgb(): Tuple3 } object Black extends Color { override def rgb(): Tuple3 = ("0", "0", "0"); } trait GUIWindow { // Rendering methods that return this for fluent drawing def set_pen_color(color: Color): GUIWindow; def move_to(pos: Position): GUIWindow; def line_to(pos: Position, end_pos: Position): GUIWindow; def render(): GUIWindow = { this; } // Don't draw anything, just return this, for child implementations to use fluently def top_left(): Position; def bottom_left(): Position; def top_right(): Position; def bottom_right(): Position; } trait WindowBorder extends GUIWindow { def render(): GUIWindow = { super.render() .move_to(top_left()) .set_pen_color(Black) .line_to(top_right()) .line_to(bottom_right()) .line_to(bottom_left()) .line_to(top_left()) ; } } class SwingWindow extends GUIWindow { ... }; val appWin = new SwingWindow() with WindowBorder; appWin.render()
Perl 6
In Perl 6, you could wrap your mutators in methods which return the invocant, or you can take advantage of the meta-object protocol to write a new attribute trait to define an attribute as both read/write and returning the invocant. The following code does the latter.
# we use the meta-object protocol to create chainable mutators multi trait_mod:<is>(Attribute:D $attr, :$chainymutable!) { $attr does role { method compose(Mu \package) { my constant NO_ARG = Mu.new; my $this_attr = self; package.^add_method: $this_attr.name.substr(2), # strip sigil method (Mu \value = NO_ARG) { if value =:= NO_ARG { $this_attr.get_value(self) } else { $this_attr.set_value(self, value); self } } nextsame(); } } } class Employee { # Rat is a rational number. No more floating point errors subset Salary of Rat where * > 0; subset NonEmptyString of Str where * ~~ /\S/; # at least one non-space character has NonEmptyString $.name is chainymutable; has NonEmptyString $.surname is chainymutable; has Salary $.salary is chainymutable; method Str { return qq:to; Name: {$.name} Surname: {$.surname} Salary: {$.salary} END } } my $employee = Employee.new(); $employee.name("Tom").surname("Smith").salary(100); say "$employee"; # or ... $employee.name("Bob")\ .surname("Jones")\ .salary(200); say "$employee";
PHP
In PHP, one can return the current object by using the $this special variable which represent the instance. Hence return $this; will make the method return the instance. The example below defines a class Employee and three methods to set its name, surname and salary. Each return the instance of the Employee class allowing to chain methods.
<?php class Employee { public $name; public $surName; public $salary; public function setName($name) { $this->name = $name; return $this; } public function setSurname($surname) { $this->surName = $surname; return $this; } public function setSalary($salary) { $this->salary = $salary; return $this; } public function __toString() { $employeeInfo = 'Name: ' . $this->name . PHP_EOL; $employeeInfo .= 'Surname: ' . $this->surName . PHP_EOL; $employeeInfo .= 'Salary: ' . $this->salary . PHP_EOL; return $employeeInfo; } } # Create a new instance of the Employee class: $employee = new Employee(); # Employee Tom Smith has a salary of 100: echo $employee->setName('Tom') ->setSurname('Smith') ->setSalary('100'); # Display: # Name: Tom # Surname: Smith # Salary: 100
C#
C# uses fluent programming extensively in LINQ to build queries using the standard query operators. The implementation is based on extension methods.
var translations = new Dictionary<string, string> { {"cat", "chat"}, {"dog", "chien"}, {"fish", "poisson"}, {"bird", "oiseau"} }; // Find translations for English words containing the letter "a", // sorted by length and displayed in uppercase IEnumerable<string> query = translations .Where (t => t.Key.Contains("a")) .OrderBy (t => t.Value.Length) .Select (t => t.Value.ToUpper()); // The same query constructed progressively: var filtered = translations.Where (t => t.Key.Contains("a")); var sorted = filtered.OrderBy (t => t.Value.Length); var finalQuery = sorted.Select (t => t.Value.ToUpper());
Fluent interface can also be used to chain a set of method, which operates/shares the same object. Like instead of creating a customer class we can create a data context which can be decorated with fluent interface as follows.
//defines the data context class Context { public string fname { get; set; } public string lname {get; set;} public string sex { get; set; } public string address { get; set; } } //defines the customer class class Customer { Context context = new Context(); //initializes the context // set the value for properties public Customer FirstName(string firstName) { context.fname = firstName; return this; } public Customer LastName(string lastName) { context.lname = lastName; return this; } public Customer Sex(string sex) { context.sex = sex; return this; } public Customer Address(string address) { context.address = address; return this; } //prints the data to console public void Print() { Console.WriteLine("first name: {0} \nlast name: {1} \nsex: {2} \naddress: {3}",context.fname,context.lname,context.sex,context.address); } } class Program { static void Main(string args) { //object creation Customer c1 = new Customer(); //using the method chaining to assign & print data with a single line c1.FirstName("vinod").LastName("srivastav").Sex("male").Address("bangalore").Print(); } }
Python
In Python returning `self` in the instance method is one way to implement the fluent pattern.
class Poem(object): def __init__(self, content): self.content = content def indent(self, spaces): self.content = " " * spaces + self.content return self def suffix(self, content): self.content = self.content + " - " + content return self Poem("Road Not Travelled").indent(4).suffix("Robert Frost").content ' Road Not Travelled - Robert Frost'
Problems
Debugging & error reporting
Single-line chained statements may be more difficult to debug as debuggers may not be able to set breakpoints within the chain. Stepping through a single-line statement in a debugger may also be less convenient.
java.nio.ByteBuffer.allocate(10).rewind().limit(100);
Another issue is that it may not be clear which of the method calls caused an exception, in particular if there are multiple calls to the same method. These issues can be overcome by breaking the statement into multiple lines which preserves readability while allowing the user to set breakpoints within the chain and to easily step through the code line by line:
java.nio.ByteBuffer. allocate(10). rewind(). limit(100);
However, some debuggers always show the first line in the exception backtrace, although the exception has been thrown on any line.
Logging
One more issue is with adding log statements.
ByteBuffer buffer = ByteBuffer.allocate(10).rewind().limit(100);
E.g. to log the state of buffer after rewind() method call, it is necessary to break the fluent calls:
ByteBuffer buffer = ByteBuffer.allocate(10).rewind(); log.debug("First byte after rewind is " + buffer.get(0)); buffer.limit(100);
Subclasses
Subclasses in strongly typed languages (C++, Java, C#, etc.) often have to override all methods from their superclass that participate in a fluent interface in order to change their return type. For example, in Java:
class A { public A doThis() { ... } } class B extends A{ public A doThis() { super.doThis(); return this; } // Must change return type to B. public B doThat() { ... } } ... A a = new B().doThat().doThis(); // It works even without overriding A.doThis(). B b = new B().doThis().doThat(); // It would fail without overriding A.doThis().
Languages that are capable of expressing F-bound polymorphism can use it to avoid this difficulty. E. g. in Java:
abstract class AbstractA<T extends AbstractA<T>> { @SuppressWarnings("unchecked") public T doThis() { ...; return (T)this; } } class A extends AbstractA<A> {} class B extends AbstractA<B> { public B doThat() { ...; return this; } } ... B b = new B().doThis().doThat(); // Works! A a = new A().doThis(); // Also works.
Note that in order to be able to create instances of the parent class, we had to split it into two classes — AbstractA
and A
, the latter with no content (it would only contain constructors if those were needed). The approach can easily be extended if we want to have sub-subclasses (etc.) too:
abstract class AbstractB<T extends AbstractB<T>> extends AbstractA<T> { @SuppressWarnings("unchecked") public T doThat() { ...; return (T)this; } } class B extends AbstractB<B> {} abstract class AbstractC<T extends AbstractC<T>> extends AbstractB<T> { @SuppressWarnings("unchecked") public T foo() { ...; return (T)this; } } class C extends AbstractC<C> {} ... C c = new C().doThis().doThat().foo(); // Works! B b = new B().doThis().doThat(); // Still works.
See also
References
- http://www.martinfowler.com/bliki/FluentInterface.html
- Uniform Function Call Syntax, Dr. Dobbs Journal, 28 Mar 2012
External links
- Martin Fowler's original bliki entry coining the term
- A Delphi example of writing XML with a fluent interface
- A .NET fluent validation library written in C#
- A tutorial for creating formal Java fluent APIs from a BNF notation
Software design patterns | |||||||
---|---|---|---|---|---|---|---|
Gang of Four patterns |
| ||||||
Concurrency patterns | |||||||
Architectural patterns | |||||||
Other patterns | |||||||
Books | |||||||
People | |||||||
Communities | |||||||
See also |