Misplaced Pages

LaserDisc: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 05:55, 27 October 2015 editTheOverflow (talk | contribs)Extended confirmed users746 edits MCA: no need for 'young'← Previous edit Revision as of 23:04, 1 November 2015 edit undo96.59.47.2 (talk) lol laserdisc are badTag: blankingNext edit →
Line 1: Line 1:
lol laserdisc are bad
{{distinguish|disk laser}}
lol laserdisc are bad
{{about|the early optical disc format|other optical disc formats|history of optical recording}}
lol laserdisc are bad
{{original research|date=August 2014}}
lol laserdisc are bad
{{ infobox media
lol laserdisc are bad
| logo = ]
lol laserdisc are bad
| image = ]
lol laserdisc are bad
| caption = A LaserDisc (left) compared with a DVD
lol laserdisc are bad
| type = ]
lol laserdisc are bad
| encoding = ], ]
lol laserdisc are bad
| capacity = 60 minutes per side on CLV discs; 30 minutes per side on CAV discs
lol laserdisc are bad
| read = 780 nm wavelength semiconductor laser (early players used HeNe gas lasers)
lol laserdisc are bad
| write =
lol laserdisc are bad
| standard =
lol laserdisc are bad
| owner = ], ], ]
lol laserdisc are bad
| use = ], ]
lol laserdisc are bad
| extended from =
lol laserdisc are bad
| extended to =
lol laserdisc are bad
}}
lol laserdisc are bad
{{Optical disc authoring}}
lol laserdisc are bad

lol laserdisc are bad
'''LaserDisc''' ('''LD''') is a ] format and the first commercial ] storage medium, initially licensed, sold, and marketed as '''MCA DiscoVision''' (also known as simply "'''DiscoVision'''") in North America in 1978.
lol laserdisc are bad

lol laserdisc are bad
Although the format was capable of offering higher-quality video and audio than its consumer rivals, the ] and ] videocassette systems, LaserDisc never managed to gain widespread use in ], largely due to high costs for the players and video titles themselves and the inability to record TV programming.<ref name="youtube" /> It also remained a largely obscure format in ] and ]. By contrast, the format was much more popular in ] and in the more affluent regions of ], such as ], ], and ], being the prevalent rental video medium in Hong Kong during the 1990s.<ref name="Followers" /> Its superior video and audio quality did make it a somewhat popular choice among ] and film enthusiasts during its lifespan.<ref name="Laserdisc_videophiles" />
lol laserdisc are bad

lol laserdisc are bad
The technologies and concepts behind LaserDisc are the foundation for later optical disc formats, including ], ], and ].
lol laserdisc are bad

lol laserdisc are bad
== History ==
lol laserdisc are bad
], using a transparent disc,<ref name="Transparent recording disc" /> was invented by ] and ] in 1958 (and patented in 1961 and 1990).<ref name="Video signal transducer" /><ref name="Disc-shaped member" /> The Gregg patents were purchased by ] in 1968. By 1969, ] had developed a ] in reflective mode, which has advantages over the transparent mode. MCA and Philips then decided to combine their efforts and first publicly demonstrated the video disc in 1972.
lol laserdisc are bad

lol laserdisc are bad
LaserDisc was first available on the market, in ], on December 15, 1978,<ref name="CED magic" /> two years after the introduction of the ] ], and four years before the introduction of the ] (which is based on laser disc technology). Initially licensed, sold, and marketed as ''MCA DiscoVision'' (also known as simply "''DiscoVision''") in North America in 1978, the technology was previously referred to internally as ''Optical Videodisc System'', ''Reflective Optical Videodisc'', ''Laser Optical Videodisc'', and ''Disco-Vision'' (with a dash), with the first players referring to the format as "''Video Long Play''".
lol laserdisc are bad

lol laserdisc are bad
] later purchased the majority stake in the format and marketed it as both ''LaserVision'' (format name) and ''LaserDisc'' (brand name) in 1980, with some releases unofficially referring to the medium as "''Laser Videodisc''". Philips produced the players while MCA produced the discs. The Philips-MCA cooperation was not successful, and discontinued after a few years. Several of the scientists responsible for the early research (Richard Wilkinson, Ray Dakin and John Winslow) founded Optical Disc Corporation (now ODC Nimbus).
lol laserdisc are bad

lol laserdisc are bad
In 1979, the ] in Chicago opened their "Newspaper" exhibit which used interactive LaserDiscs to allow visitors to search for the front page of any '']'' newspaper. This was a very early example of public access to electronically stored information in a museum.
lol laserdisc are bad

lol laserdisc are bad
The first LaserDisc title marketed in North America was the MCA DiscoVision release of '']'' in 1978.<ref>{{harvnb|Mast|Kawin|2003|page=198}}</ref> The last title released in North America was Paramount's '']'' in 2000.<ref>{{cite web|url=http://laserdiscplanet.com/museum2.html|title=LaserDisc Museum|accessdate=2012-11-27
lol laserdisc are bad
|publisher=LASERDISC PLANET}}</ref> The last Japanese released movie was the Hong Kong film '']'' from ]. A dozen or so more titles continued to be released in Japan, until the end of 2001. Production of LaserDisc players continued until January 14, 2009, when Pioneer stopped making them.<ref name="PioneerUKPressRelease20090115" /><ref name="JCNNetwork20090114" /><ref name="HomeMediaMagazine20090114" />
lol laserdisc are bad

lol laserdisc are bad
In the mid-1980s ] pioneered the ] ] for film and television based on the LaserDisc jukebox players described below.
lol laserdisc are bad

lol laserdisc are bad
Instead of printing ] out on film, the processed negatives would be sent to the mastering plant to be assembled from their 10-minute camera negative elements into 20-minute film segments which would then be able to be mastered onto single-sided blank LaserDiscs, just as a DVD would be burnt at home today, and allow for much easier selection and preparation of an ]. In the days before ] was available in cinematography, this was the only other way a film crew could see their work.
lol laserdisc are bad

lol laserdisc are bad
The EDL went to the negative cutter who then cut the camera negative accordingly and assembled the finished film. Only 24 EditDroid systems were ever built, even though the ideas and technology are still in use today.
lol laserdisc are bad

lol laserdisc are bad
The only difference in the later systems was, just as a jukebox has only two playback heads, one for each side of the disc, or one head which rotates to the selected side, the later EditDroid experiments borrowed from hard-drive technology of having multiple discs on the same spindle and added numerous playback heads and numerous electronics to the basic jukebox design so that any point on each of the discs would be accessible within seconds. This eliminated the need for racks and racks of industrial LaserDisc players since EditDroid discs were only single-sided.
lol laserdisc are bad

lol laserdisc are bad
It was estimated that in 1998, LaserDisc players were in approximately 2% of U.S. households (roughly two million).<ref name="Indiana university" /> By comparison, in 1999, players were in 10% of Japanese households.<ref name="Flaherty" /> LaserDisc was released on June 10, 1981 in Japan{{clarify |date=July 2012}}, and a total of 3.6&nbsp;million LaserDisc players were sold there.<ref name="Pioneer End" /> A total of 16.8 million LaserDisc players were sold worldwide, of which 9.5 million were sold by Pioneer.<ref name="PioneerUKPressRelease20090115" /><ref name="JCNNetwork20090114" /><ref name="HomeMediaMagazine20090114" />
lol laserdisc are bad

lol laserdisc are bad
By the early 2000s, LaserDisc was completely replaced by ] in the North American retail marketplace, as neither players nor software were then produced. Players were still exported to North America from Japan until the end of 2001. The format has retained some popularity among American collectors, and to a greater degree in Japan, where the format was better supported and more prevalent during its life. In Europe, LaserDisc always remained an obscure format. It was chosen by the ] (BBC) for the ] in the mid-1980s, a school-based project to commemorate 900&nbsp;years since the original ] in England. From 1991 up until the early 2000s, the BBC also used LaserDisc technology to play out the ].
lol laserdisc are bad

lol laserdisc are bad
== Design ==
lol laserdisc are bad
]
lol laserdisc are bad

lol laserdisc are bad
The standard home video LaserDisc was {{convert|30|cm|in|0|abbr=on}} in diameter and made up of two single-sided aluminum discs layered in plastic. Although appearing similar to ]s or ]s, LaserDiscs used ] stored in the ] (having a video bandwidth approximately equivalent to the {{convert|1|in|mm|adj=on}} C-Type VTR format) with analog FM stereo sound and PCM ]. The LaserDisc at its most fundamental level was still recorded as a series of pits and lands much like CDs, DVDs, and even Blu-ray Discs are today. However, while the encoding is of a binary nature, the information is encoded as analog ] with a 50% duty cycle, where the information is contained in the lengths and spacing of the pits. In true digital media the pits, or their edges, directly represent 1s and 0s of a binary digital information stream.<ref name="How is LaserDisc analog?" /> The spiral track of a LaserDisc is {{convert|67|km|abbr=on}} long. Early LaserDiscs featured in 1978 were entirely analog but the format evolved to incorporate digital stereo sound in CD format (sometimes with a ] or coax output to feed an external DAC), and later multi-channel formats such as ] and ].
lol laserdisc are bad

lol laserdisc are bad
Since digital encoding and compression schemes were either unavailable or impractical in 1978, three encoding formats based on the rotation speed were used:
lol laserdisc are bad

lol laserdisc are bad
]
lol laserdisc are bad
; CAV: ] or ''Standard Play'' discs supported several unique features such as freeze frame, variable slow motion and reverse. CAV discs were spun at a constant rotational speed (1800&nbsp;rpm for 525&nbsp;line and 1500&nbsp;rpm for 625&nbsp;line discs)<ref name="LaserDisc" /> during playback, with one video ] read per revolution. In this mode, 54,000&nbsp;individual frames (30&nbsp;minutes of audio/video) could be stored on a single side of a CAV disc. Another unique attribute to CAV was to reduce the visibility of ] from adjacent tracks, since on CAV discs any crosstalk at a specific point in a frame is simply from the same point in the next or previous frame. CAV was used less frequently than CLV, and reserved for special editions of feature films to highlight bonus material and special effects. One of the most intriguing advantages of this format was the ability to reference every frame of a film directly by number, a feature of particular interest to film buffs, students and others intrigued by the study of errors in staging, continuity and so on.
lol laserdisc are bad
; CLV: ] or ''Extended Play'' discs do not have the "trick play" features of CAV, offering only simple playback on all but the high-end LaserDisc players incorporating a ]. These high-end LaserDisc players could add features not normally available to CLV discs such as variable forward and reverse, and a VCR-like "pause". By gradually slowing down their rotational speed (1,800–600&nbsp;rpm)<ref name="LaserDisc" /> CLV encoded discs could store 60&nbsp;minutes of audio/video per side, or two hours per disc. For films with a run–time less than 120&nbsp;minutes, this meant they could fit on one disc, lowering the cost of the title and eliminating the distracting exercise of "getting up to change the disc", at least for those who owned a dual-sided player. The vast majority of titles were only available in CLV (a few titles were released partly CLV, partly CAV. For example, a 140-minute movie could fit on two CLV sides and one CAV side, thus allowing for the CAV-only features during the climax of the film).
lol laserdisc are bad
; CAA: In the early 1980s, due to problems with crosstalk distortion on CLV extended play LaserDiscs, Pioneer Video introduced ] (CAA) formatting for extended play discs. Constant Angular Acceleration is very similar to Constant Linear Velocity, save for the fact that CAA varies the angular rotation of the disc in controlled steps instead of gradually slowing down in a steady linear pace as a CLV disc is read. With the exception of ]/], all LaserDisc manufacturers adopted the CAA encoding scheme, although the term was rarely (if ever) used on any consumer packaging. CAA encoding noticeably improved picture quality and greatly reduced crosstalk and other tracking problems.
lol laserdisc are bad

lol laserdisc are bad
As Pioneer introduced Digital Audio to LaserDisc in 1985, they further refined the CAA format. CAA55 was introduced in 1985 with a total playback capacity per side of 55&nbsp;minutes 5&nbsp;seconds, reducing the video capacity to resolve bandwidth issues with the inclusion of Digital Audio. Several titles released between 1985 and 1987 were analog audio only due to the length of the title and the desire to keep the film on one disc (e.g., ''Back to the Future''). By 1987, Pioneer had overcome the technical challenges and was able to once again encode in CAA60, allowing a total of 60&nbsp;minutes 5&nbsp;seconds. Pioneer further refined CAA, offering CAA45, encoding 45&nbsp;minutes of material, but filling the entire playback surface of the side. Used on only a handful of titles, CAA65 offered 65&nbsp;minutes 5&nbsp;seconds of playback time per side. There are a handful of titles pressed by Technidisc that used CAA50. The final variant of CAA is CAA70, which could accommodate 70&nbsp;minutes of playback time per side. There are not any known uses of this format on the consumer market.
lol laserdisc are bad

lol laserdisc are bad
=== Audio ===
lol laserdisc are bad
] could be stored in either analog or digital format and in a variety of ] formats; ] discs could carry two analog audio tracks, plus two ] ] ] tracks, which were (], ], 16-bit and 44.056&nbsp;kHz ]).<ref name="dam" /> ] discs could carry one pair of audio tracks, either analog or digital and the digital tracks on a PAL disc were 16-bit 44.1&nbsp;kHz as on a CD; in the UK, the term "LaserVision" is used to refer to discs with analog sound, while "LaserDisc" is used for those with digital audio. The digital sound signal in both formats are ]-encoded as in ].<ref name="dam" /> ] (also called AC-3) and ]—which are now common on DVD titles—first became available on LaserDisc, and '']'' (1999) which was released on LaserDisc in Japan, is among the first home video releases ever to include 6.1 channel Dolby Digital EX Surround.<ref name="mindspring" /> Unlike DVDs, which carry Dolby Digital audio in digital form, LaserDiscs store Dolby Digital in a ] form within a track normally used for analog audio. Extracting Dolby Digital from a LaserDisc required a player equipped with a special "AC-3 RF" output and an external ] in addition to an AC-3 ]. The demodulator was necessary to convert the 2.88&nbsp;] modulated AC-3 information on the disc into a 384&nbsp;] signal that the decoder could handle. DTS audio, when available on a disc, replaced the digital audio tracks; hearing DTS sound required only an ] compliant digital connection to a DTS decoder.
lol laserdisc are bad

lol laserdisc are bad
In the mid to late 1990s many higher-end AV receivers included the demodulator circuit specifically for the LaserDisc players RF modulated Dolby Digital AC-3 signal. By the late 1990s with LaserDisc players and disc sales declining due to DVD's growing popularity the AV receiver manufacturers removed the demodulator circuit. Although DVD players were capable of playing Dolby Digital tracks, the signal out of DVD player were not in a modulated form and not compatible with the inputs designed for LaserDisc AC-3. Outboard demodulators were available for a period that convert the AC-3 signal to standard Dolby Digital signal that was compatible with the standard Dolby Digital/PCM inputs on capable AV receivers. Another type marketed by Onkyo<ref>{{ cite web| title= Instructions for Onkyo ED901 decoder.|url= http://dl.owneriq.net/6/6e22327f-1a71-4992-810e-f9cacb996391.pdf }}</ref> and others converted the RF AC-3 signal to 6-channel analog audio.
lol laserdisc are bad

lol laserdisc are bad
The two FM audio channels occupied the disc spectrum at 2.3 and 2.8&nbsp;MHz on NTSC formatted discs and each channel had a 100&nbsp;kHz FM deviation. The FM audio carrier frequencies were chosen to minimize their visibility in the video image, so that even with a poorly mastered disc, audio carrier beats in the video will be at least ‑35&nbsp;dB down, and thus, invisible. Due to the frequencies chosen, the 2.8&nbsp;MHz audio carrier (Right Channel) and the lower edge of the chroma signal are very close together and if filters are not carefully set during mastering, there can be interference between the two. In addition, high audio levels combined with high chroma levels can cause mutual interference, leading to beats becoming visible in highly saturated areas of the image. To help deal with this, Pioneer decided to implement the CX Noise Reduction System on the analog tracks. By reducing the dynamic range and peak levels of the audio signals stored on the disc, filtering requirements were relaxed and visible beats greatly reduced or eliminated. The CX system gives a total NR effect of 20&nbsp;dB, but in the interest of better compatibility for non-decoded playback, Pioneer reduced this to only 14&nbsp;dB of noise reduction (the RCA CED system used the "original" 20&nbsp;dB CX system). This also relaxed calibration tolerances in players and helped reduce audible pumping if the CX decoder was not calibrated correctly.
lol laserdisc are bad

lol laserdisc are bad
At least where the digital audio tracks were concerned, the sound quality was unsurpassed at the time compared to consumer videotape, but the quality of the analog soundtracks varied greatly depending on the disc and, sometimes, the player. Many early and lower-end LD players had poor analog audio components, and many early discs had poorly mastered analog audio tracks, making digital soundtracks in any form most desirable to serious enthusiasts. Early DiscoVision and LaserDisc titles lacked the digital audio option, but many of those movies received digital sound in later re-issues by Universal, and the quality of analog audio tracks generally got far better as time went on. Many discs that had originally carried old analog stereo tracks received new ] and ] tracks instead, often in addition to digital tracks, helping boost sound quality. Later analog discs also applied ], which improved the signal-noise ratio of their audio.
lol laserdisc are bad

lol laserdisc are bad
Both AC-3 and DTS surround audio were clumsily implemented on LaserDiscs, leading to some interesting player- and disc-dependent issues. A disc that included AC-3 audio forfeited the right analog audio channel to the modulated AC-3 RF stream. If the player did not have an AC-3 output available, the next most attractive playback option would be the digital Dolby Surround or stereo audio tracks. The reason for this is the RF signal needs to bypass the audio circuitry in order to be properly processed by the demodulator. If either the player did not support digital audio tracks (common in older players), or the disc did not include digital audio tracks at all (uncommon for a disc which is mastered with an AC-3 track), the only remaining option was to fall back to a monophonic presentation of the left analog audio track. However, many older analog-only players not only failed to output AC-3 streams correctly, but were not even aware of their potential existence. Such a player will happily play the analog audio tracks verbatim, resulting in garbage (static) output in the right channel.
lol laserdisc are bad

lol laserdisc are bad
On a DTS disc, digital PCM audio was not available, so if a DTS decoder was also not available, the only option is to fall back to the analog Dolby Surround or stereo audio tracks. In some cases, the analog audio tracks were further made unavailable through replacement with supplementary audio such as isolated scores or audio commentary. This effectively reduced playback of a DTS disc on a non-DTS equipped system to mono audio, or in a handful of cases, no film soundtrack at all.<ref name="blam1" />
lol laserdisc are bad

lol laserdisc are bad
Only one 5.1 surround sound option existed on a given LaserDisc (either Dolby Digital or DTS), so if surround sound is desired, the disc had to be matched to the capabilities of the playback equipment (LD Player and Receiver/Decoder) by the purchaser. A fully capable LaserDisc playback system included a newer LaserDisc player that is capable of playing digital tracks, had a digital optical output for digital PCM and DTS audio, would be aware of AC-3 audio tracks, and had an AC-3 coaxial output; an external or internal AC-3 RF demodulator and AC-3 decoder; and a DTS decoder. Many 1990s A/V receivers combined the AC-3 decoder and DTS decoder logic, but an integrated AC-3 demodulator was rare both in LaserDisc players and in later A/V receivers.<ref name="PrecisionLaserdisc" />
lol laserdisc are bad

lol laserdisc are bad
] LaserDiscs had a slightly longer playing time than ] discs, but had fewer audio options. PAL discs only have two audio tracks, consisting of either two analog-only tracks on older PAL LDs, or two digital-only tracks on newer discs. In comparison, later NTSC LDs are capable of carrying four tracks (two analog and two digital). On certain releases, one of the analog tracks is used to carry a modulated ] signal for ] audio (for decoding and playback by newer LD players with an "AC-3 RF" output). However, older NTSC LDs made before 1984 (such as the original DiscoVision discs) only have two analog audio tracks.
lol laserdisc are bad

lol laserdisc are bad
== LaserDisc players ==
lol laserdisc are bad
]-branded LaserDisc player with the lid open.]]
lol laserdisc are bad

lol laserdisc are bad
The earliest players employed gas ] tubes to read discs and had a red-orange light with a wavelength of 632.8&nbsp;], while later solid-state players used ] ] ]s with a wavelength of 780&nbsp;nm.
lol laserdisc are bad

lol laserdisc are bad
In March 1984, Pioneer introduced the first consumer player with a solid-state laser, the LD-700. It was also the first LD player to load from the front and not the top. One year earlier Hitachi introduced an expensive industrial player with a laser diode, but the player, which had poor picture quality due to an inadequate drop-out compensator, was made only in limited quantities. After Pioneer released the LD-700, gas lasers were no longer used in consumer players, despite their advantages, although Philips continued to use gas lasers in their industrial units until 1985.
lol laserdisc are bad

lol laserdisc are bad
Most LaserDisc players required the user to manually turn the disc over to play the other side. A number of players (all diode laser based) were made that were capable of playing both sides of the disc automatically.
lol laserdisc are bad

lol laserdisc are bad
Pioneer produced some multi-disc models that held more than 50 LaserDiscs. One company offered, for a short time in 1984, a "LaserStack" unit that added multi-disc capability to existing players: the Pioneer LD-600, LD-1100 or the Sylvania/Magnavox clones. It required the user to physically remove the player lid for installation and attached to the top of the player. LaserStack held up to 10&nbsp;discs and could automatically load or remove them from the player or change sides in around 15 seconds.
lol laserdisc are bad

lol laserdisc are bad
The first mass-produced, industrial LaserDisc player was the MCA DiscoVision PR-7820, later rebranded the ]. In North America, this unit was used in many ] dealerships as a source of training videos and presentation of GM's new line of cars and trucks in the late 1970s and early 1980s.
lol laserdisc are bad

lol laserdisc are bad
Most players made after the mid-1980s were capable of also playing ]s. These players included a {{convert|4.7|in|cm|0|abbr=on}} indentation in the loading tray, where the CD would be placed for play. At least two Pioneer models (the CLD-M301 and the CLD-M90) also operated as a CD changer, with several 4.7&nbsp;in indentations around the circumference of the main tray.
lol laserdisc are bad

lol laserdisc are bad
The Pioneer DVL-9, introduced in 1996, was both Pioneer's first consumer DVD player and the first combination DVD/LD player.
lol laserdisc are bad

lol laserdisc are bad
The first ] player was the Pioneer HLD-X0. A later model, the HLD-X9, featured a superior ], and laser diodes on both sides of the disc.
lol laserdisc are bad

lol laserdisc are bad
=== Some significant players ===
lol laserdisc are bad
* ], first player capable of playing {{convert|5|in|mm|adj=on}} ] discs. Released in 1987.
lol laserdisc are bad
* ], a 1994 model with ] playback.
lol laserdisc are bad
* ] players: The Pioneer CLD-A100 and NEC PDE-LD1 provided the ability to play Sega Genesis (Mega Drive) and TurboGrafx16 (PC Engine) video games when used in conjunction with additional components.
lol laserdisc are bad
* ] series, capable of playing both LaserDiscs and DVDs
lol laserdisc are bad

lol laserdisc are bad
== Branding ==
lol laserdisc are bad
]
lol laserdisc are bad

lol laserdisc are bad
During its development, ], which co-owned the technology, referred to it as the ''Optical Videodisc System'', "Reflective Optical Videodisc" or "Laser Optical Videodisc", depending on the document; changing the name once in 1969 to '']'' and then again in 1978 to ''DiscoVision'' (without the hyphen), which became the official spelling. Technical documents and brochures produced by MCA Disco-Vision during the early and mid-'70s also used the term "Disco-Vision Records" to refer to the pressed discs. MCA owned the rights to the largest catalog of films in the world during this time, and they manufactured and distributed the DiscoVision releases of those films under the "MCA DiscoVision" software and manufacturing label; consumer sale of those titles began on December 15, 1978, with the aforementioned '']''.
lol laserdisc are bad

lol laserdisc are bad
Philips' preferred name for the format was "VLP", after the Dutch words Video Langspeel-Plaat ("Video long-play disc"), which in English-speaking countries stood for Video Long-Play. The first consumer player, the Magnavox VH-8000 even had the VLP logo on the player. For a while in the early and mid-1970s, Philips also discussed a compatible audio-only format they called "ALP", but that was soon dropped as the Compact Disc system became a non-compatible project in the Philips corporation. Until early 1980, the format had no "official" name.
lol laserdisc are bad
The LaserVision Association, made up of MCA, Universal-Pioneer, ], and Philips/Magnavox, was formed to standardize the technical specifications of the format (which had been causing problems for the consumer market) and finally named the system officially as "LaserVision".
lol laserdisc are bad

lol laserdisc are bad
After its introduction in Japan in 1981, the format was introduced in Europe in 1983 with the LaserVision name although Philips used "VLP" in model designations, such as VLP-600. Philips tried renaming the entire format in 1987 to "CD-Video", and while the name and logo appeared on players and labels for years, the 'official' name of the format remained LaserVision. In the early 1990s, the format's name was finally changed to LaserDisc.
lol laserdisc are bad

lol laserdisc are bad
=== Pioneer ===
lol laserdisc are bad
] also entered the optical disc market in 1977 as a 50/50 joint-venture with MCA called Universal-Pioneer and manufacturing MCA designed industrial players under the MCA DiscoVision name (the PR-7800 and PR-7820). For the 1980 launch of the first Universal-Pioneer player, the VP-1000 was noted as a "laser disc player", although the "LaserDisc" logo displayed clearly on the device. In 1981, "LaserDisc" was used exclusively for the medium itself, although the official name was "LaserVision" (as seen at the beginning of many LaserDisc releases just before the start of the film). However, as Pioneer reminded numerous video magazines and stores in 1984, LaserDisc was a trademarked word, standing only for LaserVision products manufactured for sale by Pioneer Video or Pioneer Electronics. A 1984 Ray Charles ad for the LD-700 player bore the term "Pioneer LaserDisc brand videodisc player". From 1981 until the early 1990s, all properly licensed discs carried the LaserVision name and logo, even Pioneer Artists titles.

On single sided LaserDiscs mastered by Pioneer, playing the wrong side will cause a still screen to appear with a happy, upside down turtle that has a LaserDisc for a stomach (nicknamed the "LaserDisc Turtle"). The words "Program material is recorded on the other side of this disc" are below the turtle.<ref>, YouTube</ref> Other manufacturers used a regular text message without graphics.

=== MCA ===
During the early years, MCA also manufactured discs for other companies including ], ] and ] Some of them added their own names to the disc jacket to signify that the movie was not owned by MCA. After Discovision Associates shut down in early 1982, Universal Studio's videodisc software label, called ''MCA Videodisc'' until 1984, began reissuing many DiscoVision titles. Unfortunately, quite a few, such as '']'' and '']'', were time-compressed versions of their CAV or CLV Disco Vision originals. The time-compressed CLV re-issue of ''Jaws'' no longer had the original soundtrack, having had incidental background music replaced for the video disc version due to licensing cost (the music would not be available until the THX LaserDisc box set was released in 1995). One Universal/Columbia co-production issued by MCA Disco Vision in both CAV and CLV versions, '']'', is still not available in any other home video format with its original score intact; even the most recent DVD release has had substantial music replacements of both instrumental score and Willie Nelson's songs. An MCA release of Universal′s '']'', sees only the start credits shown in widescreen before changing to 4:3 for the rest of the film. For many years this was the only disc-based release of the film, until widescreen DVD formats were released with extras. Also, the LaserDisc release of '']'' is the only format to include the cut scene of ] playing the part of the school headmaster telling off Elliott for letting the frogs free in the biology class.

== Comparison with other formats ==
{{for|a comparison of consumer video resolutions|List of common resolutions#Television}}

=== VHS ===
LaserDisc had a number of advantages over ]. It featured a far sharper picture with a horizontal ] of 425&nbsp;] lines for NTSC and 440&nbsp;TVL lines for PAL discs, while VHS featured only 240&nbsp;TVL lines<ref name="Video interchange" /> with NTSC. It could handle analog and digital audio where VHS was mostly analog only (VHS can have PCM audio in professional applications but is uncommon), and the NTSC discs could store multiple audio tracks. This allowed for extras like director's commentary tracks and other features to be added onto a film, creating "Special Edition" releases that would not have been possible with VHS. Disc access was random and chapter based, like the DVD format, meaning that one could jump to any point on a given disc very quickly. By comparison, VHS would require tedious rewinding and fast-forwarding to get to specific points.

LaserDiscs were initially cheaper than videocassettes to manufacture, because they lacked the moving parts and plastic outer shell that are necessary for VHS tapes to work, and the duplication process was much simpler. A VHS cassette has at least 14 parts including the actual tape while LaserDisc has one part with five or six layers. A disc can be stamped out in a matter of seconds whereas duplicating videotape required a complex bulk tape duplication mechanism and was a time-consuming process. However, by the end of the 1980s, average disc-pressing prices were over $5.00 per two-sided disc, due to the large amount of plastic material and the costly glass-mastering process needed to make the metal stamper mechanisms. Due to the larger volume of demand, videocassettes quickly became much cheaper to duplicate, costing as little as $1.00 by the beginning of the 1990s.

LaserDiscs potentially had a much longer lifespan than videocassettes. Because the discs were read optically instead of magnetically, no physical contact needs to be made between the player and the disc, except for the player's clamp that holds the disc at its center as it is spun and read. As a result, playback would not wear the information-bearing part of the discs, and properly manufactured LDs would theoretically last beyond one's lifetime. By contrast, a VHS tape held all of its picture and sound information on the tape in a magnetic coating which is in contact with the spinning heads on the head drum, causing progressive wear with each use (though later in VHS's lifespan, engineering improvements allowed tapes to be made and played back without contact). Also, the tape was thin and delicate, and it was easy for a player mechanism, especially on a low quality or malfunctioning model, to mishandle the tape and damage it by creasing it, frilling (stretching) its edges, or even breaking it.

=== DVD ===
By the time of the advent of the DVD, LaserDisc had declined considerably in popularity, so the two formats never directly competed with each other.

LaserDisc was a ] format: the luminance (black and white) and chrominance (color) information were transmitted in one signal, separated by the receiver. While good comb filters can do so adequately, these two signals cannot be completely separated. On DVDs, data is stored in the form of digital blocks which make up each independent frame. The signal produced is dependent on the equipment used to master the disc. Signals range from composite and split, to ] and ]. Depending upon which format is used, this can result in far higher fidelity, particularly at strong color borders or regions of high detail (especially if there is moderate movement in the picture) and low-contrast details like skin tones, where comb filters almost inevitably smudge some detail.

In contrast to the entirely digital DVD, LaserDiscs use only analog video. As the LaserDisc format is not digitally encoded and does not make use of compression techniques, it is immune to video ] (most visible as blockiness during high motion sequences) or ] (subtle visible lines in gradient areas, such as out-of-focus backgrounds, skies, or light casts from spotlights) that can be caused by the ] encoding process as video is prepared for DVD. Early DVD releases held the potential to surpass their LaserDisc counterparts, but often managed only to match them for image quality, and in some cases, the LaserDisc version was preferred. However, proprietary human-assisted encoders manually operated by specialists can vastly reduce the incidence of artifacts, depending on playing time and image complexity. By the end of LaserDisc's run, DVDs were living up to their potential as a superior format.

DVDs use compressed audio formats such as ] and ] for multichannel sound. Most LaserDiscs were encoded with stereo (often Dolby Surround) CD&nbsp;quality audio 16bit/44.1&nbsp;kHz tracks as well as analog audio tracks.<ref name="AllforMP3" />

DTS-encoded LaserDiscs have DTS soundtracks of 1,235&nbsp;kbit/s instead of the reduced bitrate of 768&nbsp;kbit/s commonly employed on DVDs with optional DTS audio.

=== Advantages ===
LaserDisc players can provide a great degree of control over the playback process. Unlike many DVD players, the transport mechanism always obeys commands from the user: pause, fast-forward, and fast-reverse commands are always accepted (barring, of course, malfunctions). There were no "User Prohibited Options" where content protection code instructs the player to refuse commands to skip a specific part (such as fast forwarding through ] warnings). (Some DVD players, particularly higher-end units, do have the ability to ignore the blocking code and play the video without restrictions, but this feature is not common in the usual consumer market.)

With CAV LaserDiscs the user can jump directly to any individual frame of a video simply by entering the frame number on the remote keypad, a feature not common among DVD players. Some DVD players have cache features which stores a certain amount of the video in RAM which allows the player to index a DVD as quickly as an LD, even down to the frame in some players.

Damaged spots on a LaserDisc can be played through or skipped over, while a DVD will often become unplayable past the damage. Some newer DVD players feature a repair+skip algorithm, which alleviates this problem by continuing to play the disc, filling in unreadable areas of the picture with blank space or a frozen frame of the last readable image and sound. The success of this feature depends upon the amount of damage. LaserDisc players, when working in full analog, recover from such errors faster than DVD players. Direct comparison here is almost impossible due to the sheer size differences between the two media. A {{convert|1|in|cm|0|abbr=on}} scratch on a DVD will probably cause more problems than a {{convert|1|in|cm|0|abbr=on}} scratch on a LaserDisc, but a fingerprint taking up 1% of the area of a DVD would almost certainly cause fewer problems than a similar mark covering 1% of the surface of a LaserDisc.{{citation needed|date=November 2013}}

Similar to the CD versus LP sound quality debates common in the ] community, some videophiles argue that LaserDisc maintains a "smoother", more "film-like", natural image while DVD still looks slightly more artificial. Early DVD demo discs often had compression or encoding problems, lending additional support to such claims at the time. However, the video ] and bandwidth of LaserDisc are substantially less than that of DVDs, making DVDs appear sharper and clearer to most viewers.

Another advantage, at least to some consumers, was the lack of any sort of ] technology. It was claimed that ]'s ] protection could not be applied to LaserDisc, due to the format's design. The ], where the Macrovision signal would be implemented, was also used for the internal timing on LaserDisc players, so test discs with Macrovision would not play at all. There was never a push to redesign the format despite the obvious potential for piracy due to its relatively small market share. The industry simply decided to engineer it into the ] specification.

LaserDisc's support for multiple audio tracks allowed for vast supplemental materials to be included on-disc and made it the first available format for "Special Edition" releases; the ] ] edition of '']'' is generally credited as being the first "Special Edition" release to home video,{{citation needed|date=July 2007}} and for setting the standard by which future SE discs were measured. The disc provided interviews, commentary tracks, documentaries, still photographs, and other features for historians and collectors.

=== Disadvantages ===
Despite the advantages over competing technology at the time (namely VHS and Betamax), the format does have drawbacks. The discs are heavy (weighing about half a pound each), cumbersome, more prone to damage if mishandled than a VHS tape, and manufacturers did not market LD units with recording capabilities to consumers. Also, because of their size, greater mechanical effort was required to spin the discs at the proper speed, resulting in much more noise generated than other media.

The space-consuming analog video signal of a LaserDisc limited playback duration to 30&nbsp;minutes (CAV) or 60&nbsp;minutes (CLV) per side because of the hardware manufacturer's refusal to reduce line count for increased playtime. After one side was finished playing, a disc has to be flipped over in order to continue watching a movie, and some titles fill two or more discs. Many players, especially units built after the mid-1980s, can "flip" discs automatically by rotating the optical pickup to the other side of the disc, but this is accompanied by a pause in the movie during the side change. If the movie is longer than what could be stored on two sides of a single disc, manually swapping to a second disc is necessary at some point during the film. One exception to this rule is the Pioneer LD-W1, which features two disc platters. In addition, perfect still frames and random access to individual still frames is limited only to the more expensive CAV discs, which only had a playing time of approximately 30 minutes per side. In later years, Pioneer and other manufacturers overcame this limitation by incorporating a digital memory buffer, which "grabbed" a single frame from a CLV disc.

The analog information encoded on LaserDiscs does not include any form of built-in checksum or error correction. Because of this, slight dust and scratches on the disc surface can result in read-errors which cause various video quality problems: glitches, streaks, bursts of static, or momentary picture interruptions. In contrast, the digital MPEG-2 format information used on DVDs has built-in error correction which ensures that the signal from a damaged disc will remain identical to that from a perfect disc right up until the point at which damage to the disc surface is so substantial that it prevents the laser from being able to identify usable data.

In addition, LaserDisc videos sometimes exhibit a problem known as "crosstalk". The issue can arise when the laser optical pickup assembly within the player is out of alignment or because the disc is damaged or excessively warped, but it could also occur even with a properly functioning player and a factory-new disc, depending on electrical and mechanical alignment problems. In these instances, the issue arose due to the fact that CLV discs require subtle changes in rotating speed at various points during playback. During a change in speed, the optical pickup inside the player might read video information from a track adjacent to the intended one, causing data from the two tracks to "cross"; the extra video information picked up from that second track shows up as distortion in the picture which looks reminiscent of swirling "]s" or rolling lines of static.

Assuming the player's optical pickup is in proper working order, crosstalk distortion normally does not occur during playback of CAV format LaserDiscs, as the rotational speed never varies. However, if the player calibration is out of order or if the CAV disc is faulty or damaged, other problems affecting tracking accuracy can occur. One such problem is "laser lock", where the player reads the same two fields for a given frame over and over again, causing the picture to look frozen as if the movie were paused.

Another significant issue unique to LaserDisc is one involving the inconsistency of playback quality between different makers and models of player. On most televisions, a given DVD player will produce a picture that is visually indistinguishable from other units. Differences in image quality between players only becomes easily apparent on large televisions and substantial leaps in image quality are generally only obtained with expensive, high-end players that allow for post-processing of the MPEG-2 stream during playback. In contrast, LaserDisc playback quality is highly dependent on hardware quality. Major variances in picture quality appear between different makers and models of LD players, even when tested on a low to mid-range television. The obvious benefits of using high quality equipment has helped keep demand for some players high, thus also keeping pricing for those units comparably high. In the 1990s, notable players sold for anywhere from US$200 to well over $1,000, while older and less desirable players could be purchased in working condition for as little as $25.

{{Main|Laser rot}}

Many early LDs were not manufactured properly; sometimes a substandard adhesive was used to sandwich together the two sides of the disc.{{citation needed|date=July 2007}} The adhesive contained impurities that were able to penetrate the lacquer seal layer and chemically attack the metalized reflective aluminium layer, causing it to ] and lose its reflective characteristics. This was a problem that was termed "]" among LD enthusiasts, also called "color flash" internally by LaserDisc-pressing plants. Some forms of laser rot could appear as black spots that looked like mold or burned plastic which cause the disc to skip and the movie to exhibit excessive speckling noise. But, for the most part, rotted discs could actually appear perfectly fine to the naked eye.

Later optical standards have been known to suffer ], including a notorious batch of ] during the late 1980s/early 1990s.

== Impact ==
LaserDisc did not have high market penetration in North America due to the high cost of the players and discs, which were far more expensive than VHS players and tapes, and due to marketplace confusion with the technologically inferior ], which also went by the name ]. While the format was not widely adopted by North American consumers, it was well received among ]s due to the superior audio and video quality compared to ] and ] tapes, finding a place in nearly one million American homes by the end of 1990.<ref name="Dick" /> The format was more popular in Japan than in North America because prices were kept low to ensure adoption, resulting in minimal price differences between VHS tapes and the higher quality LaserDiscs, helping ensure that it quickly became the dominant consumer video format in Japan. ] collectors in every country the LD format was released, which includes both North America and Japan, also quickly became familiar with this format, and sought the higher video and sound quality of LaserDisc and the availability of numerous titles not available on VHS. LaserDiscs were also popular alternatives to videocassettes among movie enthusiasts in the more affluent regions of South East Asia, such as Singapore, due to their high integration with the Japanese export market and the disc-based media's superior longevity compared to videocassette, especially in the humid conditions endemic to that area of the world.

The format also became quite popular in Hong Kong during the 1990s before the introduction of ] and DVD; although people rarely bought the discs (because each LD was priced around USD100), high rental activity helped the video rental business in the city grow larger than it had ever been previously. Due to integration with the Japanese export market, NTSC LaserDiscs were used in the Hong Kong market, in contrast to the PAL standard used for broadcast (This anomaly also exists for DVD). This created a market for multi-system TVs and multi-system VCRs which could display or play both PAL and NTSC materials in addition to SECAM materials (which were never popular in Hong Kong). Some LD players could convert NTSC signals to PAL so that most TVs used in Hong Kong could display the LD materials.

Despite the mild popularity, manufacturers refused to market recordable LaserDisc devices on the consumer market, even though the competing ] devices could record onto cassette, which hurt sales worldwide. The inconvenient disc size, the high cost of both the players and the media and the inability to record onto the discs combined to take a serious toll on sales, and contributed to the format's poor adoption figures.

Although the LaserDisc format was supplanted by DVD by the late 1990s, many LD titles are still highly coveted by movie enthusiasts (for example, Disney's '']'' which is unavailable in the US in any format, but was issued in Japan on LD). This is largely because there are many films that are still only available on LD and many other LD releases contain supplemental material not available on subsequent DVD versions of those films. Until the end of 2001, many titles were released on VHS, LD, and DVD in Japan.

LD players are also sometimes still found in contemporary North American ] and college ] classrooms, in order to play a disc of the '']'' series of mid-20th century '']'' films reproducing classic experiments in the field which are difficult or impossible to replicate in the laboratories in educational settings.<ref name="Littler" /> These films have now been released on DVD.<ref name="AAPT" />

== Uses ==

=== Computer control ===
In the early 1980s, Philips produced a LaserDisc player model adapted for a computer interface, dubbed "professional". In 1985, Jasmine Multimedia created LaserDisc Juke Boxes featuring music videos from ], ], and ]. When connected to a PC this combination could be used to display images or information for educational or archival purposes, for example thousands of scanned medieval manuscripts. This strange device could be considered a very early equivalent of a CD-ROM.

In 1986, a ]-equipped LaserDisc player attached to a ] computer was used for the ]. The player was referred as an LV-ROM (]) as the discs contained the driving software as well as the video frames. The discs used the CAV format, and encoded data as a binary signal represented by the analog audio recording. These discs could contain in each CAV frame video/audio or video/binary data, but not both. "Data" frames would appear blank when played as video. It was typical for each disc to start with the disc catalog (a few blank frames) then the video introduction before the rest of the data. Because the format (based on the ] hard disc format) used a starting sector for each file, the data layout effectively skipped over any video frames. If all 54,000&nbsp;frames are used for data storage an LV-ROM disc can contain 324&nbsp;MB of data per side.<ref name="Wiley" /> The Domesday Project systems also included a genlock, allowing video frames, clips and audio to be mixed with graphics originated from the BBC Master; this was used to great effect for displaying high resolution photographs and maps, which could then be zoomed into.

During the 1980s in the United States, Digital Equipment Corporation developed the standalone PC control IVIS (Interactive VideoDisc Information System) for training and education. One of the most influential programs developed at DEC was Decision Point, a management gaming simulation, which won the Nebraska Video Disc Award for Best of Show in 1985.

Apple's ] scripting language provided Macintosh computer users with a means to design databases of slides, animation, video and sounds from LaserDiscs and then to create interfaces for users to play specific content from the disc through software called LaserStacks.<ref name="Wiley" /> User-created "stacks" were shared and were especially popular in education where teacher-generated stacks were used to access discs ranging from art collections to basic biological processes. Commercially available stacks were also popular with the Voyager company being possibly the most successful distributor.<ref name="Martin" />

]'s 1992 multimedia presentation system for the ], AmigaVision, included device drivers for controlling a number of LaserDisc players through a serial port. Coupled with the Amiga's ability to use a ], this allowed for the LaserDisc video to be overlaid with computer graphics and integrated into presentations and multimedia displays, years before such practice was commonplace.

Pioneer also made computer-controlled units such as the LD-V2000. It had a back-panel ] serial connection through a five-pin ], and no front-panel controls except ''Open/Close''. (The disc would be played automatically upon insertion.)

Under contract from the ], ] produced a combination computer/LaserDisc player for instructional purposes. The computer was a ], the LaserDisc player only capable of reading the analog audio tracks. Together they weighed {{convert|43|lb|kg|abbr=on}} and sturdy handles were provided in case two people were required to lift the unit. The computer controlled the player via a 25-pin serial port at the back of the player and a ribbon cable connected to a proprietary port on the motherboard. Many of these were sold as surplus by the military during the 1990s, often without the controller software. Nevertheless, it is possible to control the unit by removing the ribbon cable and connecting a serial cable directly from the computer's serial port to the port on the LaserDisc player.

=== Computer games ===
The format's instant-access capability made it possible for a new breed of LaserDisc-based video ]s and several companies saw potential in using LaserDiscs for video games in the 1980s and 1990s, beginning in 1983 with Sega's '']''. ] and ] produced elaborate arcade consoles that used the random-access features to create interactive movies such as '']'' and '']''. Similarly, the ] and ] were introduced as home video game consoles that used LaserDisc media for their software.

=== MUSE LD ===
In 1991, several manufacturers announced specifications for what would become known as MUSE LaserDisc, representing a span of almost 15&nbsp;years until the feats of this HD analog optical disc system would finally be duplicated digitally by ]. Encoded using ]'s ] "Hi-Vision" analogue TV system, MUSE discs would operate like standard LaserDiscs but would contain high-definition 1,125-line (1,035&nbsp;visible lines) (]) video with a 5:3 aspect ratio. The MUSE players were also capable of playing standard NTSC format discs and are superior in performance to non-MUSE players even with these NTSC discs. The MUSE-capable players had several noteworthy advantages over standard LaserDisc players, including a red laser with a much narrower wavelength than the lasers found in standard players. The red laser was capable of reading through disc defects such as scratches and even mild disc rot that would cause most other players to stop, stutter or drop-out. Crosstalk was not an issue with MUSE discs, and the narrow wavelength of the laser allowed for the virtual elimination of crosstalk with normal discs.

In order to view MUSE encoded discs, it was necessary to have a MUSE decoder in addition to a compatible player. There are televisions with MUSE decoding built-in and set top tuners with decoders that can provide the proper MUSE input. Equipment prices were high, especially for early HDTVs which generally eclipsed US$10,000, and even in Japan the market for MUSE was tiny. Players and discs were never officially sold in North America, although several distributors imported MUSE discs along with other import titles. '']'', '']'', '']'', '']'', '']'', '']'' and '']'' were among the theatrical releases available on MUSE LDs. Several documentaries, including one about ] at Japan's ] were also released.

=== Picture discs ===
Picture discs have artistic etching on one side of the disc to make the disc more visually attractive than the standard shiny silver surface. This etching might look like a movie character, logo, or other promotional material. Sometimes that side of the LD would be made with colored plastic rather than the clear material used for the data side. Picture disc LDs only had video material on one side as the "picture" side could not contain any data. Picture discs are rare in North America.

=== LD-G ===
]—one of the format's largest supporters/investors—was also deeply involved in the ] business in Japan, and used LaserDiscs as the storage medium for music and additional content such as graphics. The format was generally called LD-G. While several other karaoke labels manufactured LaserDiscs, there was nothing like the breadth of competition in that industry that exists now, as almost all manufacturers have transitioned to ] discs.

=== Squeeze LD ===
With the release of ] televisions in the mid-1990s, Pioneer and Toshiba decided that it was time to take advantage of this aspect ratio. Squeeze LDs were enhanced 16:9-ratio widescreen LaserDiscs. During the video transfer stage, the movie was stored in an anamorphic "squeezed" format. The widescreen movie image was stretched to fill the entire video frame with less or none of the video resolution wasted to create ] bars. The advantage was a 33% greater vertical resolution compared to letterboxed widescreen LaserDisc. This same procedure was used for DVD. Unlike all DVD players, very few LD players had the ability to unsqueeze the image for ] sets. If the discs were played on a 4:3 television the image would be distorted. Since very few people owned 16:9 displays, the marketability of these special discs was very limited.

There were no anamorphic LaserDisc titles available in the US except for promotional purposes. Upon purchase of a Toshiba 16:9 television viewers had the option of selecting a number of Warner Bros. 16:9 films. Titles include '']'', '']'', '']'', and '']''. The Japanese lineup of titles was different. A series of releases under the banner "SQUEEZE LD" from Pioneer of mostly ] titles included '']'', '']'', '']'', '']'', '']'', and '']''. ''Terminator 2'' was released twice in Squeeze LD, the second release being THX certified and a notable improvement over the first.

== LaserDisc sizes ==
The most common size of LaserDisc was {{convert|30|cm|in|1|abbr=on}}. These approximated the size of {{convert|12|in|cm|1|abbr=on}} ]. These discs allowed for 30&nbsp;minutes per side (CAV) or 60&nbsp;minutes per side (CLV). The vast majority of programming for the LaserDisc format was produced on these discs.

A number of {{convert|20|cm|in|1|abbr=on}} LaserDiscs were also published. These smaller "]"-sized LDs allowed for 20&nbsp;minutes per side (CLV). They are much rarer than the full-size LDs, especially in North America, and roughly approximate the size of 45rpm ({{convert|7|in|cm|1|abbr=on}}) vinyl singles. These discs were often used for music video compilations (e.g. ]'s "Breakout", ]'s "Video Singles" or ] "View From a Bridge".{{citation needed|date=January 2009}})

There were also {{convert|12|cm|in|1|abbr=on}} (] size) "]"-style discs produced that were playable on LaserDisc players. These were referred to as ] (CD-V) discs, and ]s (VSD). A CD-V carried up to five minutes of analog LaserDisc-type video content (usually a music video), as well as up to 20&nbsp;minutes of digital ] tracks. The original 1989 release of David Bowie's retrospective '']'' CD box set prominently featured a CD-V video of ''Ashes to Ashes'', and standalone promo CD-Vs featured the video, plus three audio tracks: "John, I'm Only Dancing", "Changes", and "The Supermen".

CD-Vs are not to be confused with ]s (which are all-digital and can only be played on ] players, ] players, ] players, computers, and later-model LaserDisc players, such as the DVL series from Pioneer that can also play DVDs). CD-Vs can only be played back on LaserDisc players with CD-V capability. VSDs were the same as CD-Vs, but without the ] tracks. CD-Vs were somewhat popular for a brief time worldwide, but soon faded from view. VSDs were popular only in Japan and other parts of Asia, and were never really introduced to the rest of the world.

== {{anchor|CRVdisc}}Recordable formats ==
]

Another type of video media, ''CRVdisc'', or "Component Recordable Video Disc" were available for a short time, mostly to professionals. Developed by ], CRVdiscs resemble early ] ] caddies with a disc inside resembling a full-sized LD. CRVdiscs were blank, ] media that could be recorded once on each side. CRVdiscs were used largely for backup storage in professional/commercial applications.{{citation needed|date=July 2007}}

] tape for size comparison]]

Another form of recordable LaserDisc that was completely playback-compatible with the LaserDisc format (unlike CRVdisc with its caddy enclosure) is the ''RLV'', or ''Recordable LaserVision'' disc. It was developed and first marketed by the ] (ODC, now ODC Nimbus) in 1984. RLV discs, like CRVdisc, are also a ] technology, and function exactly like a ] disc. RLV discs looked almost exactly like standard LaserDiscs, and could play in any standard LaserDisc player after they have been recorded.

The only cosmetic difference between an RLV disc and a regular factory-pressed LaserDiscs was their reflective purple-violet (or blue with some RLV discs) color resulting from the dye embedded in the reflective layer of the disc to make it recordable, as opposed to the silver mirror appearance of regular LDs. The purplish color of RLVs was very similar to present-day ] and ] discs. RLVs were popular for making short-run quantities of LaserDiscs for specialized applications such as interactive ]s and ]s.

These recordable LD systems were never marketed toward the general public, and are so poorly known as to create the misconception that home recording for LaserDiscs was impossible and that this was a weakness of the LaserDisc format.

== See also ==
* ]
* ]
* ]
* ]
* ]

== References ==
{{Reflist|30em|refs=
<ref name="youtube">{{ cite web|title=LaserDisc Players: wave of the future?|url=http://www.youtube.com/watch?v=ZOJ5h0EC9Nc|publisher=YouTube|accessdate=24 October 2011 }}</ref>
<ref name="Followers">{{ cite web|title=Followers of LaserDisc Interest|url=http://ww.itimes.com/lifestyle/laserdisc/followers|publisher=itimes|accessdate=28 July 2014 }}</ref>
<ref name="Transparent recording disc">{{US patent |3,430,966}} Transparent recording disc, 1969.</ref>
<ref name="Video signal transducer">{{US patent |3,530,258}} Video signal transducer, 1970.</ref>
<ref name="Disc-shaped member">{{US patent|4,893,297}} Disc-shaped member, 1990.</ref>
<ref name="CED magic">{{ cite journal | publisher = CED magic | contribution = DiscoVision marketed | url = http://www.cedmagic.com/history/discovision-marketed.html | title = History of Media Technology | accessdate = 8 April 2011 }}{{inconsistent citations }}</ref>
<ref name="PioneerUKPressRelease20090115">{{ cite journal | publisher =Pioneer | type = press release | title = End of Laser Disc Player Products | url = http://www.pioneer.co.uk/uk/content/press/news/endoflaserdiscplayer.html|date= 2009-01-15 | place = UK | accessdate= 2009-04-25 | postscript =<!-- Bot inserted parameter. Either remove it; or change its value to "". for the cite to end in a ""., as necessary. --> }}{{inconsistent citations }}</ref>
<ref name="JCNNetwork20090114">{{ cite web|title=Pioneer Announces End of Laser Disc Player Products|url=http://www.japancorp.net/Article.Asp?Art_ID=20902| publisher = Japan Corp | date=2009-01-14| accessdate= 2009-04-25 }}</ref>
<ref name="HomeMediaMagazine20090114">{{ cite web| publisher = Home media | title=Laser Disc Officially Dead|url=http://www.homemediamagazine.com/news/laserdisc-officially-dead-14333|date = 2009-01-14 |accessdate=2009-04-25 }}</ref>
<ref name="Indiana university">{{ cite web|title=New and emerging video technologies: A status report | date =October 29, 1998|url=http://www.dlib.indiana.edu/~brancoli/videostatus.html| publisher = Indiana university | accessdate = 2007-10-05 }}</ref>
<ref name="Flaherty">{{ cite news|title=Bittersweet Times for Collectors of Laser Disk Movies | date =April 29, 1999|url= http://query.nytimes.com/gst/fullpage.html?res=9D0CE5DD123DF93AA15757C0A96F958260&sec=&spon=&pagewanted=print |accessdate = 2007-10-05 |work= The New York Times|first=Julie|last=Flaherty }}</ref>
<ref name="Pioneer End">{{ cite journal | type = press release | publisher = Pioneer | title= Laser disk player production end| place = ] | url= http://pioneer.jp/press/2009/0114-1.html |date=2009-01-14|accessdate=2009-03-09 }}{{inconsistent citations }}</ref>
<ref name="How is LaserDisc analog?">{{ cite web|title=LD vs. DVD: A Fundamental Difference|url= http://web.archive.org/web/20080513083110/http://www.access-one.com/rjn/laser/legacy/ld96.html|date= 1999-07-03|accessdate=2012-12-13 }}</ref>
<ref name="LaserDisc">{{ cite web|url=http://www.blamld.com/DiscoVision/VP-1000_12-80.htm|title=LaserDisc: A vision comes to life|date=October 28, 1999|accessdate= 2011-02-10|publisher=Blam Entertainment Group }}</ref>
<ref name="dam">{{ cite journal |url= http://www.aes.org/e-lib/browse.cfm?elib=11765 | title = Digital audio modulation in the PAL and NTSC video disc formats | journal = J. Audio Eng. Soc | volume = 32 | page = 883 | year = 1984| accessdate= 2008-02-24 }}{{inconsistent citations }}</ref>
<ref name="mindspring">{{ cite web| title= Laserdisc Forever Review of Star Wars Episode 1: The Phantom Menace|date=May 9, 2000|url= http://www.mindspring.com/~laserdisc-forever/phantommenace.htm | accessdate = 2007-10-05 }}</ref>
<ref name="blam1">{{ cite web|title=DTS Digital Surround LaserDisc|date=January 24, 2005|url=http://www.blam1.com/LaserDisc/dts.htm|accessdate=2007-07-20 }}</ref>
<ref name="PrecisionLaserdisc">{{ cite web|title=LaserDisc FAQ|publisher=PrecisionLaserdisc.com|url= http://www.precisionlaserdisc.com/newfaq.html|accessdate=2007-07-20 }}</ref>
<ref name="Video interchange">{{ cite web | url = http://www.videointerchange.com/video-history.htm | title = Video interchange | contribution = Video history }}{{inconsistent citations }}</ref>
<ref name="AllforMP3">{{ cite web|title=(2.7) How does DVD compare to laser disc?|publisher=AllforMP3.com|url=http://www.allformp3.com/dvd-faqs/27.htm |accessdate=2007-07-20 }}</ref>
<ref name="Dick">{{ cite web|last=Dick|first=Jeff|title=Laserdisc Redux|url=http://web.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=5d0a0509-2bd6-4e66-ae7c-32351c2e5996%40sessionmgr113&vid=2&hid=123|accessdate=9 October 2012 }}</ref>
<ref name="Littler">{{ cite web|first = Kay Hansen | last = Littler|title=Physics: CINEMA CLASSICS|publisher= Department of Physics, University of North Texas|url=http://www.phys.unt.edu/~klittler/demo_room/MultiMedia/CINCLSS.html|accessdate=2007-07-20 }}</ref>
<ref name="AAPT">{{ cite web|author=AAPT|title=Physics: CINEMA CLASSICS|publisher=AAPT|url= http://www.aapt.org/Store/cinemaclassics.cfm|accessdate=2008-01-15 }}</ref>
<ref name="Wiley">{{ cite journal | type= proceedings | format = PDF | contribution = The BBC Domesday projet, a nation-wide CIS for $4448 | title = Auto carto | url = http://mapcontext.com/autocarto/proceedings/auto-carto-8/pdf/the-bbc-domesday-project-a-nation-wide-cis-for-$4448.pdf | publisher = Map context | issue = 8 }}{{inconsistent citations }}</ref>
<ref name="Wiley">{{ cite web|title=LaserStacks|url=http://www.credoreference.com/entry/hargravecomms/laserstacks|work=Hargrave's Communications Dictionary|publisher=Wiley|accessdate=9 October 2012 }}</ref>
<ref name="Martin">{{ cite web|first = Jeff | last = Martin |title=Voyager Company CD-ROMs: Production History and Preservation Challenges of Commercial Interactive Media|publisher=Electronic Arts Intermix (EAI) Resource Guide|url= http://resourceguide.eai.org/preservation/computer/pdf-docs/voyager_casestudy.pdf|format=PDF| accessdate=2007-07-20 }}</ref>
<ref name="Laserdisc_videophiles">{{ cite web|title=I Think I Must Admit that Laserdisc Is Dead|url=http://www.mediageek.net/2009/01/i-think-i-must-admit-that-laserdisc-is-dead/|publisher=mediageek|accessdate=2014-12-02 }}</ref>
}}

== Further reading ==
* Jordan Isailovic, ''Videodisc and Optical Memory Systems''. Vol. 1, Boston: Prentice Hall, 1984. ISBN 978-0-13-942053-5
* Lenk, John D. ''Complete Guide to Laser/VideoDisc Player Troubleshooting and Repair''. Englewood Cliffs, N.J.: Prentice-Hall, 1985. ISBN 0-13-160813-4.

== External links ==
{{commons category|Laserdisc}}
* : includes North American players
* : titles database, profiling, marketplace
*
*
*
*
*
* ,
* via the ]
* : includes Star Wars and Star Trek LaserDisc catalogs and lists of Dolby Digital and DTS equipped titles
* : articles, title information, marketplace
* : also contains some DiscoVision history
*
*

{{Video storage formats}}
{{Optical storage media}}

]
]
]
]
]
]
]
]
]
]
]

]

Revision as of 23:04, 1 November 2015

lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad lol laserdisc are bad