Revision as of 17:54, 28 November 2016 editLinkTiger (talk | contribs)Extended confirmed users3,146 edits Use complete sentences.← Previous edit | Revision as of 19:15, 28 November 2016 edit undoStrebe (talk | contribs)Extended confirmed users8,436 edits Perspective or not is not a strength/weakness consideration. Sections too small to be useful; moved to lede. Added Snyder Bibliography reference.Next edit → | ||
Line 1: | Line 1: | ||
] | ] | ||
The '''van der Grinten projection''' is a compromise ] that is neither ] nor ].<ref name="snyder">''Flattening the Earth: |
The '''van der Grinten projection''' is a compromise ], which means that it is neither ] nor ]. Unlike perspective projections, the van der Grinten projection is an arbitrary geometric construction on the plane. Van der Grinten projects the entire Earth into a circle. It largely preserves the familiar shapes of the ] while modestly reducing Mercator's distortion. Polar regions are subject to extreme distortion.<ref name="snyder">''Flattening the Earth: Two Thousand Years of Map Projections'', John P. Snyder, 1993, pp.258-262, ISBN 0-226-76747-7.</ref> | ||
==History== | ==History== | ||
] invented the projection in 1898 and received US patent #751,226 for it and three others in 1904.<ref name="bibliography">''A Bibliography of Map Projections'', John P. Snyder and Harry Steward, 1989, p. 94, US Geological Survey Bulletin 1856.</ref> The ] adopted the projection for their reference maps of the world in 1922, raising its visibility and stimulating its adoption elsewhere. In 1988, National Geographic replaced the van der Grinten projection with the ].<ref name="snyder" /> | |||
In 1904, the projection was the first of four proposed by ].<ref name="snyder" /> | |||
In 1922, the projection was made famous when the ] adopted it as their reference map of the world. In 1988, 66 years later, it was supplanted by the ].<ref name="snyder" /> | |||
==Strengths and weaknesses== | |||
Unlike perspective projections, the van der Grinten projection is an arbitrary geometric construction on the plane.<ref name="snyder" /> | |||
Areas of a fixed size at a distance from the equator look smaller on a van der Grinten map than they do on a ] but larger than they do on a ]. Van der Grinten projects the entire Earth into a circle, although the polar regions are subject to extreme distortion.<ref name="snyder" /> | |||
== Geometric construction== | == Geometric construction== | ||
The geometric construction given by van der Grinten can be written algebraically:<ref>, ] Professional Paper 1395, John P. Snyder, 1987, pp.239-242.</ref> | The geometric construction given by van der Grinten can be written algebraically:<ref>, ] Professional Paper 1395, John P. Snyder, 1987, pp. 239-242.</ref> | ||
:<math>\begin{align} x &= \frac {\pm \pi \left(A\left(G - P^2\right) + \sqrt {A^2 \left(G - P^2\right)^2 - \left(P^2 + A^2\right)\left(G^2 - P^2\right)}\right)} {P^2 + A^2} \\ | :<math>\begin{align} x &= \frac {\pm \pi \left(A\left(G - P^2\right) + \sqrt {A^2 \left(G - P^2\right)^2 - \left(P^2 + A^2\right)\left(G^2 - P^2\right)}\right)} {P^2 + A^2} \\ | ||
Line 28: | Line 21: | ||
\end{align}</math> | \end{align}</math> | ||
Where ''φ'' = 0, | |||
:<math>\begin{align} x &= \left(\lambda - \lambda_0\right) \\ y &= 0\end{align}</math> | :<math>\begin{align} x &= \left(\lambda - \lambda_0\right) \\ y &= 0\end{align}</math> |
Revision as of 19:15, 28 November 2016
The van der Grinten projection is a compromise map projection, which means that it is neither equal-area nor conformal. Unlike perspective projections, the van der Grinten projection is an arbitrary geometric construction on the plane. Van der Grinten projects the entire Earth into a circle. It largely preserves the familiar shapes of the Mercator projection while modestly reducing Mercator's distortion. Polar regions are subject to extreme distortion.
History
Alphons J. van der Grinten invented the projection in 1898 and received US patent #751,226 for it and three others in 1904. The National Geographic Society adopted the projection for their reference maps of the world in 1922, raising its visibility and stimulating its adoption elsewhere. In 1988, National Geographic replaced the van der Grinten projection with the Robinson projection.
Geometric construction
The geometric construction given by van der Grinten can be written algebraically:
where x takes the sign of λ − λ0, y takes the sign of φ and
Where φ = 0,
Similarly, if λ = λ0 or φ = ±π/2, then
In all cases, φ is the latitude, λ is the longitude, and λ0 is the central meridian of the projection.
See also
- List of map projections
- Robinson projection (successor)
References
- ^ Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp.258-262, ISBN 0-226-76747-7.
- A Bibliography of Map Projections, John P. Snyder and Harry Steward, 1989, p. 94, US Geological Survey Bulletin 1856.
- Map Projections - A Working Manual, USGS Professional Paper 1395, John P. Snyder, 1987, pp. 239-242.
Bibliography
External links
This cartography or mapping term article is a stub. You can help Misplaced Pages by expanding it. |