Revision as of 15:52, 22 February 2017 editDePiep (talk | contribs)Extended confirmed users294,285 editsm →Source and discovery: ref list author, first (initials): add punctuation as in "A. B."., replaced: |first1=L| → |first1=L.| (7) using AWB← Previous edit |
Revision as of 16:56, 20 March 2018 edit undoBoghog (talk | contribs)Autopatrolled, Extended confirmed users, IP block exemptions, New page reviewers, Pending changes reviewers, Rollbackers, Template editors137,836 edits consistent citation formattingNext edit → |
Line 87: |
Line 87: |
|
|
|
|
|
== Source and discovery == |
|
== Source and discovery == |
|
Calitoxin is a highly potent ] produced by the sea anemone '']'', which is stored in the ] of stinging cells (]).<ref name="spag">{{cite journal|last1=Spagnuolo|first1=Antonietta|last2=Zanetti|first2=Laura|last3=Cariello|first3=Lucio|last4=Piccoli|first4=Renata|title=Isolation and characterization of two genes encoding calitoxins, neurotoxic peptides from ''Calliactis parasitica'' (Cnidaria)|journal=Gene|volume=138|issue=1–2|pages=187–191|doi=10.1016/0378-1119(94)90805-2}}</ref> This sea anemone is a species from the ] family and is present along the European coasts of the Atlantic Ocean and in the Mediterranean Sea.<ref name="car">{{cite journal|last1=Cariello|first1=L.|last2=de Santis|first2=A.|last3=Fiore|first3=F.|last4=Piccoli|first4=R.|last5=Spagnuolo|first5=A.|last6=Zanetti|first6=L.|last7=Parente|first7=A.|title=Calitoxin, a neurotoxic peptide from the sea anemone ''Calliactis parasitica'': amino acid sequence and electrophysiological properties|journal=Biochemistry|date= 21 Mar 1989|volume=28|issue=6|pages=2484–9|pmid=2567180|doi=10.1021/bi00432a020}}</ref> The name calitoxin is derived from the organism from which the toxin was isolated. The toxin was isolated by a team of researchers in Naples, Italy from animals collected in the ]. The team isolated the polypeptide through a series of ]s until the ] had lost toxic activity. The resulting pellet was purified using the techniques ], ], and ].<ref name="RappuoliMontecucco1997">{{cite book|last1=Rappuoli|first1=Rino|last2=Montecucco|first2=Cesare|title=Guidebook to Protein Toxins and Their Use in Cell Biology|url=https://books.google.com/books?id=ebTwSqbjmXwC&pg=PA139|date=29 May 1997|publisher=Oxford University Press, UK|isbn=978-0-19-154728-7|pages=139–}}</ref> The team then ] the purified polypeptide chain. They also published details on the toxin's effects '']'' on crustacean tissue preparations, including nerve and muscle. Their findings were published in the journal '']'' in 1989.<ref name="car" /> |
|
Calitoxin is a highly potent ] produced by the sea anemone '']'', which is stored in the ] of stinging cells (]).<ref name="spag">{{cite journal | vauthors = Spagnuolo A, Zanetti L, Cariello L, Piccoli R | title = Isolation and characterization of two genes encoding calitoxins, neurotoxic peptides from Calliactis parasitica (Cnidaria) | journal = Gene | volume = 138 | issue = 1-2 | pages = 187–91 | date = January 1994 | pmid = 7510258 | doi = 10.1016/0378-1119(94)90805-2 }}</ref> This sea anemone is a species from the ] family and is present along the European coasts of the Atlantic Ocean and in the Mediterranean Sea.<ref name="car">{{cite journal | vauthors = Cariello L, de Santis A, Fiore F, Piccoli R, Spagnuolo A, Zanetti L, Parente A | title = Calitoxin, a neurotoxic peptide from the sea anemone Calliactis parasitica: amino acid sequence and electrophysiological properties | journal = Biochemistry | volume = 28 | issue = 6 | pages = 2484–9 | date = March 1989 | pmid = 2567180 | doi = 10.1021/bi00432a020 }}</ref> The name calitoxin is derived from the organism from which the toxin was isolated. The toxin was isolated by a team of researchers in Naples, Italy from animals collected in the ]. The team isolated the polypeptide through a series of ]s until the ] had lost toxic activity. The resulting pellet was purified using the techniques ], ], and ].<ref name="RappuoliMontecucco1997">{{cite book|last1=Rappuoli|first1=Rino|last2=Montecucco|first2=Cesare | name-list-format = vanc |title=Guidebook to Protein Toxins and Their Use in Cell Biology|url=https://books.google.com/books?id=ebTwSqbjmXwC&pg=PA139|date=29 May 1997|publisher=Oxford University Press, UK|isbn=978-0-19-154728-7|pages=139–}}</ref> The team then ] the purified polypeptide chain. They also published details on the toxin's effects '']'' on crustacean tissue preparations, including nerve and muscle. Their findings were published in the journal '']'' in 1989.<ref name="car" /> |
|
|
|
|
|
== Structure and chemistry == |
|
== Structure and chemistry == |
Line 104: |
Line 104: |
|
| style="text-align: center;" |36{{spaced ndash}} 75, 38{{spaced ndash}} 66, 56{{spaced ndash}} 76<ref>{{cite web|title=Calitoxin-2|url=http://www.uniprot.org/uniprot/P14531|website=UniProt}}</ref> |
|
| style="text-align: center;" |36{{spaced ndash}} 75, 38{{spaced ndash}} 66, 56{{spaced ndash}} 76<ref>{{cite web|title=Calitoxin-2|url=http://www.uniprot.org/uniprot/P14531|website=UniProt}}</ref> |
|
|} |
|
|} |
|
Calitoxin and other sea anemone toxins are used in studying ion channels, with potential applications in biomedical and physiology research.<ref name="Marine Drugs">{{cite journal|last1=Nagai|first1=Hiroshi|title=Special Issue "Sea Anemone Toxins"|journal=Marine Drugs|year=2012|url=http://www.mdpi.com/journal/marinedrugs/special_issues/sea-anemone-toxins}}</ref><ref name="RappuoliMontecucco1997" /> In the mature CLX, one ] is responsible for a single ] to ] replacement in the ] of CLX-2, leading to the difference between the two isoforms. The structural organization of these two genes show a high degree of homology. This suggests that the two different peptides have the same biological function. This cannot yet be confirmed because only CLX-1 has been isolated from ''C. parasitica''.<ref name="spag" /> Calitoxin has a very different sequence from another sodium channel binding sea anemone toxin, ], which is produced by the distantly related '']''.<ref>{{cite book |url=https://books.google.com/books?id=_kDDZFHdL4UC&pg=PA60 |title=Neurologic Manifestations—Advances in Research and Treatment |year=2013 |author=Q. Ashton Acton |page=60|publisher=ScholarlyEditions |isbn=9781481678049}}</ref> A better understanding of these differences might offer insights about the function of particular amino acid residues.<ref name="spag" /> Despite markedly dissimilar gene sequences, CLX-1 affects crustacean axon potentials similar to two other classes of anemone toxins. Alternatively, certain aspects of the structure of the CLX genes are found in ]s as well as other sea anemone toxins that block ]s.<ref name=Moran>{{cite journal|last1=Moran|first1=Yehu|last2=Gordon|first2=Dalia|last3=Gurevitz|first3=Michael|title=Sea anemone toxins affecting voltage-gated sodium channels – molecular and evolutionary features|journal=Toxicon|date=December 2009|volume=54|issue=8|pages=1089–1101|doi=10.1016/j.toxicon.2009.02.028|pmid=19268682|pmc=2807626}}</ref> |
|
Calitoxin and other sea anemone toxins are used in studying ion channels, with potential applications in biomedical and physiology research.<ref name="Marine Drugs">{{cite journal|last1=Nagai|first1=Hiroshi | name-list-format = vanc |title=Special Issue "Sea Anemone Toxins"|journal=Marine Drugs|year=2012|url=http://www.mdpi.com/journal/marinedrugs/special_issues/sea-anemone-toxins}}</ref><ref name="RappuoliMontecucco1997" /> In the mature CLX, one ] is responsible for a single ] to ] replacement in the ] of CLX-2, leading to the difference between the two isoforms. The structural organization of these two genes show a high degree of homology. This suggests that the two different peptides have the same biological function. This cannot yet be confirmed because only CLX-1 has been isolated from ''C. parasitica''.<ref name="spag" /> Calitoxin has a very different sequence from another sodium channel binding sea anemone toxin, ], which is produced by the distantly related '']''.<ref>{{cite book | editor-first= Abba J. | editor-last = Kastin | name-list-format = vanc |url=https://books.google.com/books?id=_kDDZFHdL4UC&pg=PA60 |title=Neurologic Manifestations—Advances in Research and Treatment |year=2013 |author=Q. Ashton Acton |page=60|publisher=ScholarlyEditions |isbn=9781481678049}}</ref> A better understanding of these differences might offer insights about the function of particular amino acid residues.<ref name="spag" /> Despite markedly dissimilar gene sequences, CLX-1 affects crustacean axon potentials similar to two other classes of anemone toxins. Alternatively, certain aspects of the structure of the CLX genes are found in ]s as well as other sea anemone toxins that block ]s.<ref name=Moran>{{cite journal | vauthors = Moran Y, Gordon D, Gurevitz M | title = Sea anemone toxins affecting voltage-gated sodium channels--molecular and evolutionary features | journal = Toxicon | volume = 54 | issue = 8 | pages = 1089–101 | date = December 2009 | pmid = 19268682 | pmc = 2807626 | doi = 10.1016/j.toxicon.2009.02.028 }}</ref> |
|
|
|
|
|
== Target and activity == |
|
== Target and activity == |
Line 111: |
Line 111: |
|
== Function in nature == |
|
== Function in nature == |
|
]]] |
|
]]] |
|
Sea anemones produce toxins, such as calitoxin, in their stinging cells (]). These cells contain organelles called ]s. When triggered, an ] response occurs. This can result in injury to target organisms, including capture of prey, defense against predatory organisms, or against aggressors from within their own species.<ref name=Kastin>{{cite book|last1=Kastin|first1=edited by Abba J.|title=Handbook of Biologically Active Peptides|date=2006|publisher=Academic Press|location=Amsterdam|isbn=0-12-369442-6|pages=363–364|url=https://books.google.com/books?id=n8SV9iM6kT0C&pg=PA363}}</ref> In its natural setting, ''C. parasitica'' can establish a ] relationship with the hermit crab '']''. The sea anemone identifies shells inhabited by the hermit crab and attaches. ''C. parasitica'' provides protection for the hermit crab, by stinging or intimidating potential predators. ]es will avoid shells bearing ''C. parasitica''.<ref>{{cite book |author=Roger T. Hanlon & John B. Messenger |year=1998 |title=Cephalopod Behaviour |publisher=] |isbn=978-0-521-64583-6 |chapter=Learning and the development of behaviour |pages=132–148 |url=https://books.google.co.uk/books?id=Nxfv6xZZ6WYC&pg=PA140}}</ref> In return for the protection, the sea anemone gains an advantage in accessing a broader distribution of food sources, as the crab moves across the ocean floor.<ref name="Fish">{{cite book |author=John Fish & Susan Fish |year=2011 |title=A Student's Guide to the Seashore |edition=3rd |publisher=] |isbn=978-0-521-72059-5 |chapter=''Calliactis parasitica'' (Couch) |page=96 |url=https://books.google.co.uk/books?id=1wD21-DC81YC&pg=PA96}}</ref> |
|
Sea anemones produce toxins, such as calitoxin, in their stinging cells (]). These cells contain organelles called ]s. When triggered, an ] response occurs. This can result in injury to target organisms, including capture of prey, defense against predatory organisms, or against aggressors from within their own species.<ref name=Kastin>{{cite book|last1=Kastin|first1=Abba J. | name-list-format = vanc |title=Handbook of Biologically Active Peptides|date=2006|publisher=Academic Press|location=Amsterdam|isbn=0-12-369442-6|pages=363–364|url=https://books.google.com/books?id=n8SV9iM6kT0C&pg=PA363}}</ref> In its natural setting, ''C. parasitica'' can establish a ] relationship with the hermit crab '']''. The sea anemone identifies shells inhabited by the hermit crab and attaches. ''C. parasitica'' provides protection for the hermit crab, by stinging or intimidating potential predators. ]es will avoid shells bearing ''C. parasitica''.<ref>{{cite book | first1 = Roger T. | last1 = Hanlon | first2 = John B. | last2 = Messenger | name-list-format = vanc |year=1998 |title=Cephalopod Behaviour |publisher=] |isbn=978-0-521-64583-6 |chapter=Learning and the development of behaviour |pages=132–148 |url=https://books.google.co.uk/books?id=Nxfv6xZZ6WYC&pg=PA140}}</ref> In return for the protection, the sea anemone gains an advantage in accessing a broader distribution of food sources, as the crab moves across the ocean floor.<ref name="Fish">{{cite book | first1 = John | last1 = Fish | first2 = Susan | last2 = Fish |name-list-format = vanc |year=2011 |title=A Student's Guide to the Seashore |edition=3rd |publisher=] |isbn=978-0-521-72059-5 |chapter=''Calliactis parasitica'' (Couch) |page=96 |url=https://books.google.co.uk/books?id=1wD21-DC81YC&pg=PA96}}</ref> |
|
|
|
|
|
== References == |
|
== References == |
Calitoxin and other sea anemone toxins are used in studying ion channels, with potential applications in biomedical and physiology research. In the mature CLX, one base-pair substitution is responsible for a single glutamic acid to lysine replacement in the coding region of CLX-2, leading to the difference between the two isoforms. The structural organization of these two genes show a high degree of homology. This suggests that the two different peptides have the same biological function. This cannot yet be confirmed because only CLX-1 has been isolated from C. parasitica. Calitoxin has a very different sequence from another sodium channel binding sea anemone toxin, ATX II, which is produced by the distantly related Anemonia sulcata. A better understanding of these differences might offer insights about the function of particular amino acid residues. Despite markedly dissimilar gene sequences, CLX-1 affects crustacean axon potentials similar to two other classes of anemone toxins. Alternatively, certain aspects of the structure of the CLX genes are found in scorpion toxins as well as other sea anemone toxins that block potassium channels.
Calitoxin causes massive neurotransmitter release from the nerve terminals of the neuromuscular junction, which in turn causes a strong muscle contraction and even paralysis. The exact target of calitoxin has not yet been clarified; since it has a similar action on the neuromuscular junction as Anemonia sulcata toxins, calitoxin may slow down the inactivation of voltage-gated sodium channels in motor neurons. Calitoxin has been tested for activity on the crab Carcinus mediterraneus. Purified toxin was injected into the hemocoel of the crab. The minimum dose of 0.2 µg of toxin triggered muscle contractions in the crab, causing paralysis within 1 minute. The median lethal dose (LD50) is unknown.