Misplaced Pages

Autocorrelation matrix: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 23:43, 24 December 2018 editFvultier (talk | contribs)Extended confirmed users1,158 edits Correcting nonsense article.← Previous edit Revision as of 21:18, 25 December 2018 edit undoFvultier (talk | contribs)Extended confirmed users1,158 edits PropertiesNext edit →
Line 39: Line 39:


==Properties== ==Properties==
* The autocorrelation matrix is a ]. * The autocorrelation matrix is a ] for complex random vectors and a ] for real random vectors.
* The autocorrelation matrix is a ]. * The autocorrelation matrix is a ].
* The ''autocovariance matrix'' is related to the autocorrelation matrix as follows: * The ''autocovariance matrix'' is related to the autocorrelation matrix as follows:

Revision as of 21:18, 25 December 2018

This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (July 2018) (Learn how and when to remove this message)
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (July 2018) (Learn how and when to remove this message)

The autocorrelation matrix of a random vector X = ( X 1 , , X n ) T {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{n})^{\rm {T}}} is a n × n {\displaystyle n\times n} matrix containing as elements the correlations of all pairs of elements of the random vector X {\displaystyle \mathbf {X} } . The autocorrelation matrixis used in various digital signal processing algorithms.

Definition

For a random vector X = ( X 1 , , X n ) T {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{n})^{\rm {T}}} containing random elements whose expected value and variance exist, the auto-correlation matrix is defined by

R X X   E [ X X T ] {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {X} }\triangleq \ \operatorname {E} } Eq.1

where T {\displaystyle {}^{\rm {T}}} denotes transposition and has dimensions n × n {\displaystyle n\times n} .

Written component-wise:

R X X = [ E [ X 1 X 1 ] E [ X 1 X 2 ] E [ X 1 X n ] E [ X 2 X 1 ] E [ X 2 X 2 ] E [ X 2 X n ] E [ X n X 1 ] E [ X n X 2 ] E [ X n X n ] ] {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {X} }={\begin{bmatrix}\operatorname {E} &\operatorname {E} &\cdots &\operatorname {E} \\\\\operatorname {E} &\operatorname {E} &\cdots &\operatorname {E} \\\\\vdots &\vdots &\ddots &\vdots \\\\\operatorname {E} &\operatorname {E} &\cdots &\operatorname {E} \\\\\end{bmatrix}}}

If Z {\displaystyle \mathbf {Z} } is a complex random vector, the autocorrelation matrix is instead defined by

R Z Z   E [ Z Z H ] {\displaystyle \operatorname {R} _{\mathbf {Z} \mathbf {Z} }\triangleq \ \operatorname {E} } .

Here H {\displaystyle {}^{\rm {H}}} denotes Hermitian transposition.

Example

For example, if X = ( X 1 , X 2 , X 3 ) T {\displaystyle \mathbf {X} =\left(X_{1},X_{2},X_{3}\right)^{\rm {T}}} is a random vectors, then R X X {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {X} }} is a 3 × 3 {\displaystyle 3\times 3} matrix whose ( i , j ) {\displaystyle (i,j)} -th entry is E [ X i X j ] {\displaystyle \operatorname {E} } .

Properties

  • The autocorrelation matrix is a Hermitian matrix for complex random vectors and a symmetric matrix for real random vectors.
  • The autocorrelation matrix is a Toeplitz matrix.
  • The autocovariance matrix is related to the autocorrelation matrix as follows:
K X X = E [ ( X E [ X ] ) ( X E [ X ] ) T ] = R X X E [ X ] E [ X ] T {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {X} }=\operatorname {E} )(\mathbf {X} -\operatorname {E} )^{\rm {T}}]=\operatorname {R} _{\mathbf {X} \mathbf {X} }-\operatorname {E} \operatorname {E} ^{\rm {T}}}
Respectively for complex random vectors:
K Z Z = E [ ( Z E [ Z ] ) ( Z E [ Z ] ) H ] = R Z Z E [ Z ] E [ Z ] H {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {Z} }=\operatorname {E} )(\mathbf {Z} -\operatorname {E} )^{\rm {H}}]=\operatorname {R} _{\mathbf {Z} \mathbf {Z} }-\operatorname {E} \operatorname {E} ^{\rm {H}}}

References

Categories: