Revision as of 03:37, 2 September 2019 editJJMC89 (talk | contribs)Edit filter managers, Autopatrolled, Administrators345,075 edits no active discussion← Previous edit | Revision as of 23:25, 17 September 2019 edit undoTakuyaMurata (talk | contribs)Extended confirmed users, IP block exemptions, Pending changes reviewers89,986 edits Draft:microfunction mergedNext edit → | ||
Line 2: | Line 2: | ||
'''Algebraic analysis''' is an area of ] that deals with systems of linear ]s by using ] and ] to study properties and generalizations of functions such as ]s and microfunctions. As a research programme, it was started by ] in 1959.<ref>{{cite article|title=Professor Mikio Sato and Microlocal Analysis|author1=Masaki Kashiwara|author2=Takahiro Kawai|journal=PRIMS|volume=47|issue=1|year=2011|url=http://www.ems-ph.org/journals/show_pdf.php?issn=0034-5318&vol=47&iss=1&rank=2|doi=10.2977/PRIMS/29|via=EMS-PH}}</ref> | '''Algebraic analysis''' is an area of ] that deals with systems of linear ]s by using ] and ] to study properties and generalizations of functions such as ]s and microfunctions. As a research programme, it was started by ] in 1959.<ref>{{cite article|title=Professor Mikio Sato and Microlocal Analysis|author1=Masaki Kashiwara|author2=Takahiro Kawai|journal=PRIMS|volume=47|issue=1|year=2011|url=http://www.ems-ph.org/journals/show_pdf.php?issn=0034-5318&vol=47&iss=1&rank=2|doi=10.2977/PRIMS/29|via=EMS-PH}}</ref> | ||
== |
== Microfunctions == | ||
{{ |
{{expand section}} | ||
Let ''M'' be a real-analytic manifold and ''X'' its complexification. (The definition of microfunctions here). | |||
A microfunction can be used to define a hyper function. By definition, the sheaf of ]s on ''M'' is the restriction of the sheaf of microfunctions to ''M'', in parallel to the fact the sheaf of real-analytic functions on ''M'' is the restriction of the sheaf of holomorphic functions on ''X'' to ''M''. | |||
==See also== | ==See also== |
Revision as of 23:25, 17 September 2019
Not to be confused with the common phrase "algebraic analysis of ", meaning "the algebraic study of "Algebraic analysis is an area of mathematics that deals with systems of linear partial differential equations by using sheaf theory and complex analysis to study properties and generalizations of functions such as hyperfunctions and microfunctions. As a research programme, it was started by Mikio Sato in 1959.
Microfunctions
This section needs expansion. You can help by adding to it. |
Let M be a real-analytic manifold and X its complexification. (The definition of microfunctions here).
A microfunction can be used to define a hyper function. By definition, the sheaf of Sato's hyperfunctions on M is the restriction of the sheaf of microfunctions to M, in parallel to the fact the sheaf of real-analytic functions on M is the restriction of the sheaf of holomorphic functions on X to M.
See also
- Hyperfunction
- D-module
- Microlocal analysis
- Generalized function
- Edge-of-the-wedge theorem
- FBI transform
- Localization of a ring
- Vanishing cycle
- Gauss–Manin connection
- Differential algebra
- Perverse sheaf
- Mikio Sato
- Masaki Kashiwara
- Lars Hörmander
Further reading
This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it. |