Revision as of 10:34, 26 October 2019 editOboofyu (talk | contribs)273 edits →Definition← Previous edit | Revision as of 10:36, 26 October 2019 edit undoOboofyu (talk | contribs)273 edits →DefinitionNext edit → | ||
Line 21: | Line 21: | ||
:<math>H^{0}(M,\mathbf{R})</math> | :<math>H^{0}(M,\mathbf{R})</math> | ||
which can be identified with <math>\mathbf{R}</math>. Therefore cup product, under these hypotheses, does give rise to a ] on ''H''<sup>2''k''</sup>(''M'',''R''); and therefore to a quadratic form ''Q''. The form ''Q'' is ] due to Poincaré duality, as it pairs non-degenerately with itself.<ref>{{cite book|last1=Milnor|first1= |
which can be identified with <math>\mathbf{R}</math>. Therefore cup product, under these hypotheses, does give rise to a ] on ''H''<sup>2''k''</sup>(''M'',''R''); and therefore to a quadratic form ''Q''. The form ''Q'' is ] due to Poincaré duality, as it pairs non-degenerately with itself.<ref>{{cite book|last1=Milnor|first1=John|last2=Stasheff|first2=James|title=Characteristic classes|date=1962|publisher=Annals of Mathematics Studies 246|page=224|isbn=978-0691081229|url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.448.869&rep=rep1&type=pdf|accessdate=26 October 2019|language=en}}</ref> <ref>{{cite book|last1=Hatcher|first1=Allen|title=Algebraic topology|date=2003|publisher=Cambridge Univ. Pr.|location=Cambridge|isbn=978-0521795401|page=250|edition=Repr.|url=https://www.math.cornell.edu/~hatcher/AT/AT.pdf|accessdate=8 January 2017|language=en}}</ref> More generally, the signature can be defined in this way for any general compact ] with ''4n''-dimensional Poincaré duality. | ||
The '''signature''' of ''M'' is by definition the ] of ''Q'', an ordered triple according to its definition. If ''M'' is not connected, its signature is defined to be the sum of the signatures of its connected components. | The '''signature''' of ''M'' is by definition the ] of ''Q'', an ordered triple according to its definition. If ''M'' is not connected, its signature is defined to be the sum of the signatures of its connected components. |
Revision as of 10:36, 26 October 2019
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Signature" topology – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) |
In the mathematical field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension divisible by four.
This invariant of a manifold has been studied in detail, starting with Rokhlin's theorem for 4-manifolds, and Hirzebruch signature theorem.
Definition
Given a connected and oriented manifold M of dimension 4k, the cup product gives rise to a quadratic form Q on the 'middle' real cohomology group
- .
The basic identity for the cup product
shows that with p = q = 2k the product is symmetric. It takes values in
- .
If we assume also that M is compact, Poincaré duality identifies this with
which can be identified with . Therefore cup product, under these hypotheses, does give rise to a symmetric bilinear form on H(M,R); and therefore to a quadratic form Q. The form Q is non-degenerate due to Poincaré duality, as it pairs non-degenerately with itself. More generally, the signature can be defined in this way for any general compact polyhedron with 4n-dimensional Poincaré duality.
The signature of M is by definition the signature of Q, an ordered triple according to its definition. If M is not connected, its signature is defined to be the sum of the signatures of its connected components.
Other dimensions
Further information: L-theoryIf M has dimension not divisible by 4, its signature is usually defined to be 0. There are alternative generalization in L-theory: the signature can be interpreted as the 4k-dimensional (simply-connected) symmetric L-group or as the 4k-dimensional quadratic L-group and these invariants do not always vanish for other dimensions. The Kervaire invariant is a mod 2 (i.e., an element of ) for framed manifolds of dimension 4k+2 (the quadratic L-group ), while the de Rham invariant is a mod 2 invariant of manifolds of dimension 4k+1 (the symmetric L-group ); the other dimensional L-groups vanish.
Kervaire invariant
Main article: Kervaire invariantWhen is twice an odd integer (singly even), the same construction gives rise to an antisymmetric bilinear form. Such forms do not have a signature invariant; if they are non-degenerate, any two such forms are equivalent. However, if one takes a quadratic refinement of the form, which occurs if one has a framed manifold, then the resulting ε-quadratic forms need not be equivalent, being distinguished by the Arf invariant. The resulting invariant of a manifold is called the Kervaire invariant.
Properties
René Thom (1954) showed that the signature of a manifold is a cobordism invariant, and in particular is given by some linear combination of its Pontryagin numbers. For example, in four dimensions, it is given by . Friedrich Hirzebruch (1954) found an explicit expression for this linear combination as the L genus of the manifold. William Browder (1962) proved that a simply-connected compact polyhedron with 4n-dimensional Poincaré duality is homotopy equivalent to a manifold if and only if its signature satisfies the expression of the Hirzebruch signature theorem.
See also
References
- Milnor, John; Stasheff, James (1962). Characteristic classes. Annals of Mathematics Studies 246. p. 224. ISBN 978-0691081229. Retrieved 26 October 2019.
- Hatcher, Allen (2003). Algebraic topology (PDF) (Repr. ed.). Cambridge: Cambridge Univ. Pr. p. 250. ISBN 978-0521795401. Retrieved 8 January 2017.