Revision as of 01:27, 3 November 2020 editTrurle (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers16,588 edits →Planetary system: format← Previous edit | Revision as of 01:30, 3 November 2020 edit undoTrurle (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers16,588 editsm →Planetary system: rewordingNext edit → | ||
Line 80: | Line 80: | ||
In September 2008, it was announced that a ]-like planet, now designated as ], had been detected in a long-period, near-circular orbit around this star (false alarm probability thus far: a negligible 0.05%). It would induce an ] perturbation on its star of at least 0.95 ]s and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast.<ref name="bailey08" /> The orbital solution of the planet was refined in 2011.<ref name=Bonfils2011/> | In September 2008, it was announced that a ]-like planet, now designated as ], had been detected in a long-period, near-circular orbit around this star (false alarm probability thus far: a negligible 0.05%). It would induce an ] perturbation on its star of at least 0.95 ]s and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast.<ref name="bailey08" /> The orbital solution of the planet was refined in 2011.<ref name=Bonfils2011/> | ||
In 2014, a second planet ] was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass{{r|Mike Wall}} and has since been given the scientific name ].{{r|Mike Wall}} It was announced to orbit in the optimistic ] but outside the conservative habitable zone of its parent star.<ref name="Wittenmyer14" /> | In 2014, a second planet ] was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass{{r|Mike Wall}} and has since been given the scientific name ].{{r|Mike Wall}} It was announced to orbit in the optimistic ] but outside the conservative habitable zone of its parent star.<ref name="Wittenmyer14" /> The planet ] is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.{{r|Mike Wall}} | ||
The planet is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.{{r|Mike Wall}} | |||
===Search for cometary disc=== | ===Search for cometary disc=== |
Revision as of 01:30, 3 November 2020
Observation data Epoch J2000.0 Equinox J2000.0 | |
---|---|
Constellation | Grus |
Right ascension | 21 33 33.9750 |
Declination | −49° 00′ 32.4035″ |
Apparent magnitude (V) | 8.66 |
Characteristics | |
Spectral type | M2V |
B−V color index | 1.52 |
Astrometry | |
Radial velocity (Rv) | 18.0 km/s |
Proper motion (μ) | RA: −45.834±0.071 mas/yr Dec.: −816.604±0.064 mas/yr |
Parallax (π) | 201.4073 ± 0.0429 mas |
Distance | 16.194 ± 0.003 ly (4.965 ± 0.001 pc) |
Absolute magnitude (MV) | 10.19 |
Details | |
Mass | 0.45 ± 0.05 M☉ |
Radius | 0.48 R☉ |
Luminosity (bolometric) | 0.035 L☉ |
Luminosity (visual, LV) | 0.007 L☉ |
Surface gravity (log g) | 4.7 cgs |
Temperature | 3,620 K |
Metallicity | −0.06±0.04 dex |
Rotation | 45.7±9.3 d |
Age | 9.24 Gyr |
Other designations | |
CD-49°13515, HD 204961, HIP 106440, LHS 3685, PLX 5190 | |
Database references | |
SIMBAD | The star |
planet c | |
planet b | |
Exoplanet Archive | data |
Data sources: | |
Hipparcos Catalogue, HD |
Gliese 832 (Gl 832 or GJ 832) is a red dwarf of spectral type M2V in the southern constellation Grus. The apparent visual magnitude of 8.66 means that it is too faint to be seen with the naked eye. It is located relatively close to the Sun, at a distance of 16.2 light years and has a high proper motion of 818.93 milliarcseconds per year. Gliese 832 has just under half the mass and radius of the Sun. Its estimated rotation period is a relatively leisurely 46 days. The star is roughly 9.5 billion years old.
In 2014, Gliese 832 was announced to be hosting the closest potentially habitable Earth-mass-range exoplanet to the Solar System. This star achieved perihelion some 52,920 years ago when it came within an estimated 15.71 ly (4.817 pc) of the Sun.
Planetary system
Gliese 832 hosts two known planets.
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
c | ≥5.4±1 M🜨 | 0.162±0-017 | 35.68±0.03 | 0.18 ± 0.13 | — | — |
b | ≥0.62 MJ | 3.46 | 3507±181 | 0.08±0.05 | — | — |
In September 2008, it was announced that a Jupiter-like planet, now designated as Gliese 832 b, had been detected in a long-period, near-circular orbit around this star (false alarm probability thus far: a negligible 0.05%). It would induce an astrometric perturbation on its star of at least 0.95 milliarcseconds and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast. The orbital solution of the planet was refined in 2011.
In 2014, a second planet Gliese 832 c was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass and has since been given the scientific name Gliese 832 c. It was announced to orbit in the optimistic habitable zone but outside the conservative habitable zone of its parent star. The planet Gliese 832 c is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.
Search for cometary disc
If this system has a comet disc, it is undetectable "brighter than the fractional dust luminosity 10" of a recent Herschel study.
X-ray source
Gliese 832 emits X-rays.
See also
Notes
- Using the absolute visual magnitude of Gliese 832 with a bolometric correction of the bolometric magnitude can be calculated as , the bolometric magnitude of the Sun , and so therefore the bolometric luminosity can be calculated by
- Using the absolute visual magnitude of Gliese 832 and the absolute visual magnitude of the Sun , the visual luminosity can be calculated by
References
- ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
- ^ Bailey, J.; Butler, R. P.; Tinney, C. G.; Jones, H. R. A.; O'Toole, S.; Carter, B. D.; Marcy, G. W. (2009). "A Jupiter-like Planet Orbiting the Nearby M Dwarf GJ832". The Astrophysical Journal. 690 (1): 743–747. arXiv:0809.0172. Bibcode:2009ApJ...690..743B. doi:10.1088/0004-637X/690/1/743.
- ^ Suárez Mascareño, A.; et al. (September 2015), "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators", Monthly Notices of the Royal Astronomical Society, 452 (3): 2745–2756, arXiv:1506.08039, Bibcode:2015MNRAS.452.2745S, doi:10.1093/mnras/stv1441.
{{citation}}
: CS1 maint: unflagged free DOI (link) - Johnson, H. M.; Wright, C. D. (1983). "Predicted infrared brightness of stars within 25 parsecs of the sun". The Astrophysical Journal Supplement Series. 53: 643–771. Bibcode:1983ApJS...53..643J. doi:10.1086/190905.
- Flower, Phillip J. (September 1996). "Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections". The Astrophysical Journal. 469: 355. Bibcode:1996ApJ...469..355F. doi:10.1086/177785.
-
Torres, Guillermo (November 2010). "On the Use of Empirical Bolometric Corrections for Stars". The Astronomical Journal. 140 (5): 1158–1162. arXiv:1008.3913. Bibcode:2010AJ....140.1158T. doi:10.1088/0004-6256/140/5/1158.
{{cite journal}}
: Unknown parameter|layurl=
ignored (help) - Interpolated value from NASA Exoplanet Archive, per: Bessell, M. S. (1995). "The Temperature Scale for Cool Dwarfs". In Tinney, C. G. (ed.). The Bottom of the Main Sequence - and Beyond, Proceedings of the ESO Workshop. Springer-Verlag. p. 123. Bibcode:1995bmsb.conf..123B.
{{cite conference}}
: Unknown parameter|booktitle=
ignored (|book-title=
suggested) (help) - Lindgren, Sara; Heiter, Ulrike (2017). "Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature". Astronomy and Astrophysics. 604: A97. arXiv:1705.08785. Bibcode:2017A&A...604A..97L. doi:10.1051/0004-6361/201730715.
- ^ Safonova, M.; Murthy, J.; Shchekinov, Yu. A. (2014). "Age Aspects of Habitability". International Journal of Astrobiology. 15 (2): 93–105. arXiv:1404.0641. Bibcode:2016IJAsB..15...93S. doi:10.1017/S1473550415000208.
- "Gliese 832". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2018-09-23.
- ^ "Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html
- ^ Bailer-Jones, C. A. L. (March 2015), "Close encounters of the stellar kind", Astronomy & Astrophysics, 575: 13, arXiv:1412.3648, Bibcode:2015A&A...575A..35B, doi:10.1051/0004-6361/201425221, A35.
- ^ The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample, 2011, arXiv:1111.5019
- Wittenmyer, R.A.; Tuomi, M.; Butler, R.P.; Jones, H. R. A.; O'Anglada-Escude, G.; Horner, J.; Tinney, C.G.; Marshall, J.P.; Carter, B.D.; et al. (2014). "GJ 832c: A super-earth in the habitable zone". The Astrophysical Journal. 1406 (2): 5587. arXiv:1406.5587. Bibcode:2014ApJ...791..114W. doi:10.1088/0004-637X/791/2/114.
- B. C. Matthews; forthcoming study promised in Lestrade, J.-F.; Matthews, B. C.; Sibthorpe, B.; Kennedy, G. M.; Wyatt, M. C.; Bryden, G.; Greaves, J. S.; Thilliez, E.; Moro-Martín, A.; Booth, M.; Dent, W. R. F.; Duchêne, G.; Harvey, P. M.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Phillips, N. M.; Rodriguez, D. R.; Su, K. Y. L.; Wilner, D. J. (2012). "A DEBRIS Disk Around The Planet Hosting M-star GJ581 Spatially Resolved with Herschel". Astronomy and Astrophysics. 548: A86. arXiv:1211.4898. Bibcode:2012A&A...548A..86L. doi:10.1051/0004-6361/201220325.
- Schmitt, J. H. M. M.; Fleming, T. A.; Giampapa, M. S. (1995). "The X-ray view of the low-mass stars in the solar neighborhood". The Astrophysical Journal. 450 (9): 392–400. Bibcode:1995ApJ...450..392S. doi:10.1086/176149.
Known celestial objects within 20 light-years | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Italic are systems without known trigonometric parallax. |
Constellation of Grus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Stars |
| ||||||||||
| |||||||||||
Galaxies |
| ||||||||||
| |||||||||||
Category |