Misplaced Pages

HD 44179

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Mbralchenko (talk | contribs) at 17:22, 29 January 2007. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 17:22, 29 January 2007 by Mbralchenko (talk | contribs)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

File:Nebula1.jpg


The remarkable Red Rectangle: A Stairway to Heaven?

11 May 2004


HD 44179 Nebula HI RES JPG Size: 865 Kb This image, taken with the NASA/ESA Hubble Space Telescope, reveals startling new details of one of the most unusual nebulae known in our galaxy. Catalogued as HD 44179, this nebula is more commonly called the 'Red Rectangle' because of its unique shape and colour as seen with ground-based telescopes.

Hubble has revealed a wealth of new features in the Red Rectangle that cannot be seen by ground-based telescopes looking through Earth’s turbulent atmosphere. Details of the Hubble study were published in the April 2004 issue of The Astronomical Journal.

The NASA/ESA Hubble Space Telescope has revealed a wealth of new features in the Red Rectangle that cannot be seen with ground-based telescopes looking through the Earth’s turbulent atmosphere. Whereas the origins of many of the features in this dying star still remain hidden or even outright mysterious, some are well explained by theorists like the Dutch scientist Vincent Icke from Leiden University in the Netherlands.

In 1981 Vincent Icke and collaborators showed that a spherical gas ejection from a dying star hitting a dust torus would give rise to shocks that can produce cone-like outflows similar to the two cones seen in the Hubble image.

Meteorologists produce weather forecasts by advanced calculations of temperatures, pressures, velocities and densities for the air masses in our atmosphere and, to some degree, theorists like Icke are doing exactly the same for objects in space. Whether modelling the weather in the Earth’s atmosphere or the processes in distant gaseous nebulae, scientists calculate the motion of the gas by using a complicated set of expressions known as hydrodynamic equations.

Most of the matter in the Universe is in the form of gas. The weather on Earth gives rise to spectacular patterns such as thunderclouds and tornadoes in the air masses here. Likewise, the ‘weather’ in gas clouds in space, like the Red Rectangle, can be fascinating.

Of the many different parameters in Vincent Icke’s calculations, only the density of the gas and the dust are observed in the Hubble image. The reflection of the gas and dust are shown in this simulated image. The colours show what one would see in scattered light - blue light scatters more than red. The ejected blobs of gas and dust look reddish, the background nebula is whiter. The three images are a time sequence with about 600 years between and show how the Red Rectangle may have been created.