Misplaced Pages

List of multiplanetary systems

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by InterstellarGamer12321 (talk | contribs) at 15:59, 12 May 2022 (Multiplanetary systems: Added referenced note). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 15:59, 12 May 2022 by InterstellarGamer12321 (talk | contribs) (Multiplanetary systems: Added referenced note)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) A list of systems with multiple planets
Number of extrasolar planet discoveries per year through 2021. Colors indicate method of detection.
  radial velocity   transit   timing   direct detection   microlensing
Further information: Planetary system

From the total of 4,949 stars known to have exoplanets (as of July 24, 2024), there are a total of 1007 known multiplanetary systems, or stars with at least three confirmed planets, beyond the Solar System. The stars with the most confirmed planets are Sol (the Solar System's star, also referred to as the Sun) and Kepler-90 with 8 confirmed planets each, followed by TRAPPIST-1 with 7 planets. The star with the most candidate planets is HD 10180, with a maximum of 9 planets – 6 confirmed and 3 candidates.

The 1007 multiplanetary systems are listed below according to the star's distance from Earth. Proxima Centauri, the closest star to the Solar System, has three planets (b, c and d). The nearest system with four or more confirmed planets is Tau Ceti, with four known. The farthest confirmed multiplanetary system is OGLE-2012-BLG-0026L, at 13,300 ly away.

The table below contains information about the coordinates, spectral and physical properties, and number of confirmed planets. The two most important stellar properties are mass and metallicity because they determine how these planetary systems form. Systems with higher mass and metallicity tend to have more planets and more massive planets. However, although low metallicity stars tend to have fewer massive planets, particularly hot-Jupiters, they also tend to have a larger number of close in planets, orbiting at less than 1 AU.

Multiplanetary systems

Color indicates number of planets
2 (x) 3 4 5 6 7 8 9
Star
Constellation
Right
ascension

Declination
Apparent
magnitude

Distance (ly)
Spectral
type

Mass
(M)
Temperature (K)
Age
(Gyr)
Confirmed
(unconfirmed)
planets
Notes
Sun - - −26.74 1.6 × 10 G2V 1 5778 4.572 8 (1) Pluto was considered as the ninth planet from its discovery in 1930 to 2006, but is now considered to be a dwarf planet instead, along with Ceres, Haumea, Makemake and Eris. The hypothesised Planet Nine remains unconfirmed.
Proxima Centauri Centaurus 14 29 42.94853 −62° 40′ 46.1631″ 10.43 to 11.11 4.244 M5.5Ve 0.122 3042 4.85 3 Closest star to the Sun and closest star to the Sun with a multiplanetary system. Planet b is potentially habitable. Planet c unconfirmed by RV data, but nonetheless undisputed by astrometry.
Lalande 21185 Ursa Major 11 03 20.1940 +35° 58′ 11.5682″ 7.520 8.3044±0.0007 M2V 0.39 3601±51 8.047 2 (1) -
Lacaille 9352 Piscis Austrinus 23 05 52.04 −35° 51′ 11.05″ 7.34 10.721 M0.5V 0.486 3688±86 4.57 2 (1) The unconfirmed planet d is potentially habitable.
Luyten's Star Canis Minor 07 27 24.4991 05° 13′ 32.827″ 9.872 11.20 M3.5V 0.26 3150 unknown 2 (2) Stellar activity level and rotational rate suggest an age higher than 8 billion years. Planet b is potentially habitable.
YZ Ceti Cetus 01 12 30.64 −16° 59′ 56.3″ 12.07 11.74 M4.5V 0.13 3056 4 3 (1) -
Tau Ceti Cetus 01 44 05.13 −15° 56′ 22.4″ 3.49 11.905 G8V 0.783 5344 5.8 4 (4) Were planets b, c, d, and "i" confirmed, would have a total of 8 planets. Planet f is potentially habitable. Closest system to the Sun with exactly four confirmed planets, and closest G-type star to the Sun with confirmed exoplanets.
Gliese 1061 Horologium 03 35 59.69 −44° 30′ 45.3″ 13.03 12.04 M5.5V 0.113 2953 unknown 3 Planets c and d are potentially habitable.
Wolf 1061 Ophiuchus 16 30 18.0584 −12° 39′ 45.325″ 10.07 14.050 ± 0.002 M3.5V 0.294 3342 unknown 3 Planet c is potentially habitable.
L 1159-16 Aries 02 00 12.959 13° 03′ 07.01″ 12.298 14.584 ± 0.007 M4.5V 0.15 3158 4.8 2 (1) -
Gliese 876 Aquarius 22 53 16.73 −14° 15′ 49.3″ 10.17 15.25 M4V 0.334 3348 4.893 4 Planet b is a gas giant which orbits in the habitable zone.
82 G. Eridani Eridanus 03 19 55.65 −43° 04′ 11.2″ 4.254 19.71 G8V 0.7 5401 5.76 3 (3) This star also has a dust disk with a semi-major axis at approximately 19 AU.
Gliese 581 Libra 15 19 26.83 −07° 43′ 20.2″ 10.56 20.56 M3V 0.311 3484 4.326 3 (2) The unconfirmed planets d and g are potentially habitable.
Gliese 667 C Scorpius 17 18 57.16 −34° 59′ 23.14″ 10.20 21 M1.5V 0.31 3700 2 2 (1) Triple star system - all exoplanets orbit around Star C. Planet c is potentially habitable, and there are more unconfirmed planets.
HD 219134 Cassiopeia 23 13 14.74 57° 10′ 03.5″ 5.57 21 K3Vvar 0.794 4699 12.66 6 Closest star to the Sun with exactly six exoplanets, and closest K-type main sequence star to the Sun with a multiplanetary system. One of the oldest stars with a multiplanetary system, although it is still more metal-rich than the Sun.
61 Virginis Virgo 13 18 24.31 −18° 18′ 40.3″ 4.74 28 G5V 0.954 5531 8.96 2 (1) Planet d remains unconfirmed, and a 2021 study found that it was likely a false positive. 61 Virginis also has a debris disk.
Gliese 433 Hydra 11 35 26.9485 −25° 10′ 08.9″ 9.79 29.8±0.1 M1.5V 0.48 3550±100 unknown 3 An infrared excess around this star suggests a circumstellar disk.
Gliese 357 Hydra 09 36 01.6373 −21° 39′ 38.878″ 10.906 30.776 M2.5V 0.362 3488 unknown 3 Planet d is a potentially habitable Super-Earth.
L 98-59 Volans 08 18 07.62 −68° 18′ 46.8″ 11.69 34.6 M3V 0.312 3412 unknown 4 (1) The unconfirmed planet f orbits in the habitable zone.
TRAPPIST-1 Aquarius 23 06 29.283 −05° 02′ 28.59″ 18.80 39.5 M8V 0.089 2550 7.6 7 Planets d, e, f and g are potentially habitable. Only star known with exactly seven confirmed planets. All seven terrestrial planets lie within only 0.07 AU of the star.
55 Cancri Cancer 08 52 35.81 +28° 19′ 50.9″ 5.95 40 K0IV-V 1.026 5217 7.4 5 All five known planets orbit around star A (none are circumbinary or orbit around star B). Closest system with exactly five confirmed planets.
Gliese 180 Eridanus 04 53 49.9798 −17° 46′ 24.294″ 10.894 40.3 M2V or M3V 0.39 3562 unknown 3
HD 69830 Puppis 08 18 23.95 −12° 37′ 55.8″ 5.95 41 K0V 0.856 5385 7.446 3 A debris disk exterior to the three exoplanets was detected by the Spitzer Space Telescope in 2005.
HD 40307 Pictor 05 54 04.24 −60° 01′ 24.5″ 7.17 42 K2.5V 0.752 4977 1.198 4 (2) The existence of planets e and g are disputed. If confirmed, planet g is potentially habitable.
Upsilon Andromedae Andromeda 01 36 47.84 +41° 24′ 19.7″ 4.09 44 F8V 1.27 6107 3.781 4 Nearest F-type main sequence star with a multiplanetary system. Second-brightest star in the night sky with a multiplanetary system after Tau Ceti. All exoplanets orbit around star A in the binary system.
47 Ursae Majoris Ursa Major 10 59 27.97 +40° 25′ 48.9″ 5.10 46 G0V 1.029 5892 7.434 3 -
Nu Lupi Lupus 15 21 49.57 −48° 19′ 01.1″ 5.65 47 G2V 0.906 5664 10.36 3 -
LHS 1140 Draco 00 44 59.31 −15° 16′ 16.7″ 14.18 48.9 M4.5V 0.179 3216±39 5 2 (1) Planet b is a potentially habitable Super-Earth.
Gliese 163 Dorado 04 09 16 −53° 22′ 25″ 11.8 49 M3.5V 0.4 unknown 3 5 Planet c is possibly a potentially habitable Super-Earth but is probably too hot or massive.
Mu Arae Ara 17 44 08.70 −51° 50′ 02.6″ 5.15 51 G3IV-V 1.077 5704 6.413 4 Planet b orbits in the circumstellar habitable zone. However, it is a gas giant, so it itself is uninhabitable although a large moon orbiting around it may be habitable.
Gliese 676 A Ara 17 30 11.2042 −51° 38′ 13.116″ 9.59 53 M0V 0.71 unknown unknown 4 -
HD 7924 Cassiopeia 01 21 59.12 +76° 42′ 37.0″ 7.19 55 K0V 0.832 5177 unknown 3 These planets may be potentially habitable Super-Earths.
Pi Mensae Mensa 05 37 09.8851 −80° 28′ 08.8313″ 5.65 59.62±0.07 G0V 1.11 6013 3.4 3 Outer planet is likely a brown dwarf.
Gliese 3293 Eridanus 04 28 35.72 −25° 10′ 08.9″ 11.96 59 M2.5V 0.42 3466±49 unknown 4 Planets b and d orbit in the habitable zone.
Gliese 221 Orion 05 53 0 −05° 59′ 41″ 9.69 66 K7V or M0V 0.7 4324 4.4 2 (1) -
HD 142 Phoenix 00 06 19.0 −49° 04′ 30″ 5.70 67 G1 IV 1.1 6180 5.93 3 -
HD 215152 Aquarius 22 43 21 −06° 24′ 03″ 8.13 70 G8IV 1.019 5646 7.32 4 A debris disk candidate as it has an infrared excess.
HD 164922 Hercules 18 02 30.86 +26° 18′ 46.8″ 7.01 72 G9V 0.874 5293 13.4 4 Oldest star with a multiplanetary system. Despite its age, it is more metal-rich than the Sun.
HD 39194 Mensa 05 44 32 −70° 08′ 37″ 8.08 86.2 K0V unknown 5205 unknown 3 -
HIP 57274 Ursa Major 11 44 41 +30° 57′ 33″ 8.96 85 K5V 0.73 4640 7.87 3 -
HD 181433 Pavo 19 25 09.57 −66° 28′ 07.7″ 8.38 87 K5V 0.777 4962 8.974 3 -
HD 134606 Apus 15 15 15 −70° 31′ 11″ 6.85 87 G6IV unknown unknown unknown 3 -
HD 158259 Draco 17 25 24.0 +52° 47′ 26″ 6.46 89 G0 1.08 unknown unknown 5 (1) -
HD 82943 Hydra 09 34 50.74 −12° 07′ 46.4″ 6.54 90 F9V Fe+0.5 1.175 5874 3.08 3 Planets b and c are in a 2:1 orbital resonance. Planet b orbits in the habitable zone, but it and planet c are massive enough to be brown dwarfs. HD 82943 has an unusual lithium-6 abundance.
TOI 700 Dorado 06 28 22.97 −65° 34′ 43.01″ 13.10 101.61 M2V 0.416 3480 1.5 3 (1) Planet d is potentially habitable.
HD 17926 Fornax 02 51 56.16 −30° 48′ 53.2″ 6.38 105 F6V 1.145 6201 unknown 3 -
HD 37124 Taurus 05 37 02.49 +20° 43′ 50.8″ 7.68 110 G4V 0.83 5606 3.327 3 Planet c orbits at the outer edge of the habitable zone.
HD 20781 Fornax 03 20 03 −28° 47′ 02″ 8.44 115 G9.5V 0.7 5256±29 unknown 2 (2) Located in binary star system.
Kepler-444 Lyra 19 19 01 41° 38′ 05″ 9.0 117 K0V 0.758 5040 11.23 5 Nearest multiplanetary system where the planets were discovered by the Kepler space telescope.
HD 141399 Boötes 15 46 54.0 +46° 59′ 11″ 7.2 118 K0V 1.07 5600 unknown 4 Planet c orbits in the habitable zone.
Kepler-42 Cygnus 19 28 53 +44° 37′ 10″ 16.12 126 M5V 0.13 3068 unknown 3 -
HD 31527 Lepus 04 55 38 −23° 14′ 31″ 7.48 126 G0V unknown unknown unknown 3 -
HD 10180 Hydrus 01 37 53.58 −60° 30′ 41.5″ 7.33 127 G1V 1.055 5911 4.335 6 (3) Has three unconfirmed candidates. If these candidate exoplanets were confirmed, HD 10180 would have the largest planetary system of any star.
HR 8799 Pegasus 23 07 28.72 +21° 08′ 03.3″ 5.96 129 A5V 1.472 7429 0.064 4 Only A-type main sequence star with a multiplanetary system, and hottest and most massive single main sequence star with a multiplanetary system. All four planets are massive super-Jupiters.
HD 27894 Reticulum 04 20 47.05 −59° 24′ 39.0″ 9.42 138 K2V 0.8 4875 3.9 3 -
HD 93385 Vela 10 46 15.1160 −41° 27′ 51.7261″ 7.486 141.6 G2V 1.07 5823 4.13 3
K2-3 Leo 11 29 20.3918 −01° 27′ 17.280″ 12.168 143.9±0.4 M0V 0.601 3835±70 1 3 The outermost planet orbits in the habitable zone.
HD 34445 Orion 05 17 41.0 +07° 21′ 12″ 7.31 152 G0V 1.07 5836 8.5 6 Some planets were not detected or inferred to be false positives in a later study.
HD 204313 Capricornus 21 28 12.21 –21° 43′ 34.5″ 7.99 154 G5V 1.045 5767 3.38 2 (1) -
HD 3167 Pisces 00 34 57.5 +04° 22′ 53″ 8.97 154.4 K0V 0.86 5261 7.8 3 -
HD 133131 Libra 15 03 35.80651 −27° 50′ 27.5520″ 8.4 168 G2V+G2V 0.95 5799±19 6 3 2 planets around primary, and 1 planet around secondary star
HIP 14810 Aries 03 11 14.23 +21° 05′ 50.5″ 8.51 174 G5V 0.989 5485 5.271 3 -
HD 191939 Draco 20 08 05.75 +66° 51′ 2.1″ 8.971 175 G9V 0.81 5348 8.7 5 (1) There may also be another substellar companion.
HD 125612 Virgo 14 20 53.51 −17° 28′ 53.5″ 8.33 177 G3V 1.099 5897 2.15 3 -
HD 109271 Virgo 12 33 36.0 −11° 37′ 19″ 8.05 202 G5 1.047 5783 7.3 2 (1) -
HD 38677 Orion 05 47 06.0 −10° 37′ 49″″ 8.0 202 F8V 1.21 6196.0 2.01 4 -
TOI-178 Sculptor 00 29 12.30 30° 27′ 13.46″ 11.95 205.16 K7V 0.65 4316±70 7.1 6 The planets are in an orbital resonance.
HD 74156 Hydra 08 42 25.12 +04° 34′ 41.2″ 7.61 210 G0IV 1.236 6039 7.375 2 (1) -
HD 108236 Centaurus 12 26 17.89 −51° 21′ 46.21″ 9.24 211 G3V 0.97 5730 5.8 5 -
Kepler-37 Lyra 18 58 23.1 44° 31′ 05″ 9.77 215 G 0.803 5417 6 4 -
K2-72 Aquarius 22 18 29.2548 −09° 36′ 44.3824″ 15.04 217 M2V 0.27 3497 unknown 4 2 planets in habitable zone
Kepler-138 Lyra 19 21 32.0 +43° 17′ 35″ 13.5 218.5 M1V 0.57 3871 unknown 3
TOI-561 Sextans 09 52 44.44 +06° 12′ 57.97″ 10.252 279 0.785 5455 5 4 -
Kepler-445 Cygnus 19 54 57.0 +46° 29′ 55″ 18 294 0.18 3157 unknown 3 -
TOI-763 Centaurus 12 57 52.45 −39° 45′ 27.71″ 10.156 311 0.917 5444 6.2 2 (1) -
K2-229 Virgo 12 27 29.5848 −06° 43′ 18.7660″ 10.985 335 K2V 0.837 5185 5.4 3
Kepler-102 Lyra 18 45 55.9 +47° 12′ 29″ 11.492 340 K3V 0.81 4809 1.41 5
V1298 Tauri Taurus 04 05 19.5912 +20° 09′ 25.5635″ 10.31 354 K0-1.5 1.101 4970 0.023 4 This star is a young T Tauri variable.
K2-302 Aquarius 22 20 22.7764 −09° 30′ 34.2934″ 11.98 359.3 unknown 3297±73 unknown 3
TOI-125 Hydrus 01 34 22.73 −66° 40′ 32.95″ 11.02 363 0.859 5320 unknown 3 (2)
HIP 41378 Cancer 08 26 28.0 +10° 04′ 49″ 8.9 378 F8 1.15 6199 unknown 5 (2) Planet f has an unusually low density, and might have rings or an extended atmosphere. More planets are still suspected.
Kepler-446 Lyra 18 49 00.0 +44° 55′ 16″ 16.5 391 M4V 0.22 3359 unknown 3 -
Kepler-68 Cygnus 19 24 07.76 +49° 02′ 25.0″ 8.588 440 G1V 1.079 5793 6.3 3 (1) Planet d, the outermost confirmed planet, is a Jupiter-sized planet which orbits in the habitable zone. Radial velocity measurements discovered an additional signal, which could be a fourth planet or a stellar companion.
COROT-7 Monoceros 06 43 49.47 −01° 03′ 46.9″ 11.73 489 K0V 0.93 5275 1.5 2 (1) -
XO-2 Lynx 07 48 07.4814 +50° 13′ 03.2578″ 11.18 496±3 K0V+K0V unknown unknown 6.3 4 Binary with each star orbited by two planets
Kepler-411 Cygnus 19 10 25.3 +49° 31′ 24″ 12.5 499.4 0.83 4974 unknown 4
K2-32 Ophiuchus 16 49 42.2602 −19° 32′ 34.151″ 12.31 510 G9V 0.856 5275 7.9 4 The planets are likely in a 1:2:5:7 orbital resonance.
EPIC 251319382 Cancer 09 21 46.8434 +18° 28′ 10.34710″ 11.12 577 G2V 0.98 5791 unknown 3
Kepler-398 Lyra 19 25 52.5 +40° 20′ 38″ 578 K5V 0.72 4493 unknown 3
Kepler-186 Cygnus 19 54 36.6 +43° 57′ 18″ 15.29 579.23 M1V 0.478 3788 unknown 5 Planet f is the first Earth-size exoplanet discovered that orbits in the habitable zone.
K2-37 Scorpius 16 13 48.2445 −24° 47′ 13.4279″ 12.52 590 G3V 0.9 5413 unknown 3
K2-58 Aquarius 22 15 17.2364 −14° 02′ 59.3151″ 12.13 596 K2V 0.89 5038 unknown 3
K2-138 Aquarius 23 15 47.77 −10° 50′ 58.91″ 12.21 597±55 K1V 0.93 5378±60 2.3 6 Planet g was not fully verified, or could be two long-period planets instead.
K2-38 Scorpius 16 00 08.06 −23° 11′ 21.33″ 11.34 630 G3V 1.03 5731±66 unknown 2 (1) Dust disk in system
WASP-47 Aquarius 22 04 49.0 −12° 01′ 08″ 11.9 652 G9V 1.084 5400 unknown 4 One planet is a gas giant which orbits in the habitable zone. WASP-47 is the only planetary system known to have both planets near the hot Jupiter and another planet much further out.
HAT-P-13 Ursa Major 08 39 31.81 +47° 21′ 07.3″ 10.62 698 G4 1.22 5638 5 2 (1) -
Kepler-19 Cygnus 19 21 41 +37° 51′ 06″ 15.178 717 G 0.936 5541 1.9 3 System consists of a thick-envelope Super-Earth and two Neptune-mass planets.
Kepler-296 Lyra 19 06 09.6 +49° 26′ 14.4″ 12.6 737.113 K7V + M1V unknown 4249 unknown 5 All planets orbit around the primary star. Planets e and f are potentially habitable.
Kepler-454 Lyra 19 09 55.0 +38° 13′ 44″ 11.57 753 G 1.028 5687 5.25 3
Kepler-25 Lyra 19 06 33.0 +39° 29′ 16″ 11 799 F 1.22 6190 unknown 3 Two planets were discovered by transit-timing variations, and the third planet was discovered by follow-up radial velocity measurements.
Kepler-114 Cygnus 19 36 29.0 +48° 20′ 58″ 13.7 846 K 0.71 4450 unknown 3
Kepler-54 Cygnus 19 39 06.0 +43° 03′ 23″ 16.3 886 M 0.52 3705 unknown 3
Kepler-20 Lyra 19 10 47.524 42° 20′ 19.30″ 12.51 950 G8V 0.912 5466 8.8 6 Planets e and f were the first Earth-sized planets to be discovered.
K2-19 Virgo 11 39 50.4804 +00° 36′ 12.8773″ 13.002 976 K0V or G9V 0.918 5250±70 8 3 -
PSR B1257+12 Virgo 13 00 03.58 +12° 40′ 56.5″ 24.31 980 pulsar 1.444 28856 0.797 3 Only pulsar with a multiplanetary system, and first exoplanets and multiplanetary system to be confirmed. Star with dimmest apparent magnitude to have a multiplanetary system.
Kepler-62 Lyra 18 52 51.060 +45° 20′ 59.507″ 13.75 990 K2V 0.69 4925 7 5 Planets e and f orbit in the habitable zone.
Kepler-48 Cygnus 19 56 33.41 +40° 56′ 56.47″ 13.04 1000 K 0.88 5190 unknown 4
Kepler-100 Lyra 19 25 32.6 +41° 59′ 24″ 1011 G1IV 1.109 5825 6.5 3
Kepler-49 Cygnus 19 29 11.0 +40° 35′ 30″ 15.5 1015 K 0.55 3974 unknown 4
Kepler-65 Lyra 19 14 45.3 +41° 09′ 04.2″ 11.018 1019 F6IV 1.199 6211 unknown 4 -
Kepler-52 Draco 19 06 57.0 +49° 58′ 33″ 15.5 1049 K 0.58 4075 unknown 3
K2-268 Cancer 08 54 50.2862 +11° 50′ 53.7745″ 13.85 1079 unknown unknown unknown 5
K2-183 Cancer 08 20 01.7184 14° 01′ 10.0711″ 12.85 1083 unknown 5482±50 unknown 3
K2-187 Cancer 08 50 05.6682 23° 11′ 33.3712″ 12.864 1090 G?V 0.967 5438±63 unknown 4
Kepler-1542 Lyra 19 02 54.8 +42° 39′ 16″ 1096 G5V 0.94 5564 unknown 4 -
Kepler-26 Lyra 18 59 46 +46° 34′ 00″ 16 1100 M0V 0.65 4500 unknown 4 Transiting exoplanets which are low-density planets below the size of Neptune.
Kepler-81 Cygnus 19 34 32.9 +42° 49′ 30″ 15.56 1136 K?V 0.648 4391 unknown 3
Kepler-132 Lyra 18 52 56.6 +41° 20′ 35″ 1140 F9 0.98 6003 unknown 4
Kepler-80 Cygnus 19 44 27.0 +39° 58′ 44″ 14.804 1218 M0V 0.73 4250 unknown 6 Red dwarf star with six confirmed planets. Five of them are in an orbital resonance.
Kepler-159 Cygnus 19 48 16.8 +40° 52′ 08″ 1219 K 0.63 4625 unknown 2 (1) Star has a very low metallicity.
K2-299 Aquarius 22 05 06.5342 −14° 07′ 18.0135″ 13.12 1220 unknown 5724±72 unknown 3
Kepler-88 Lyra 19 24 35.5431 +40° 40′ 09.8098″ 13.5 1243 G8IV 1.022 5513±67 2.45 3
Kepler-174 Lyra 19 09 45.4 +43° 49:56′ 1269 K unknown 4880 unknown 3 Planet d may orbit in the habitable zone.
Kepler-32 Cygnus 19 51 22.0 +46° 34′ 27″ 16 1301.1 M1V 0.58 3900 unknown 3 (2) -
Kepler-83 Lyra 18 48 55.8 +43° 39′ 56″ 16.51 1306 K7V 0.664 4164 unknown 3
Kepler-271 Lyra 18 52 00.7 +44° 17′ 03″ 1319 G7V 0.9 5524 unknown 3 Metal-poor star
Kepler-169 19 03 60.0 +40° 55:10′ 12.186 1326 K2V 0.86 4997 unknown 5
Kepler-451 Cygnus 19 38 32.61 46° 03′ 59.1″ 1340 sdB+M 0.6 29564 6 3 Three circumbinary planets orbit around the Kepler-451 binary pair.
Kepler-304 Cygnus 19 37 46.0 +40° 33′ 27″ 1418 K 0.8 4731 unknown 4
Kepler-18 Cygnus 19 52 19.06 +44° 44′ 46.76″ 13.549 1430 G7V 0.97 5345 10 3
Kepler-106 Cygnus 20 03 27.4 +44° 20′ 15″ 12.882 1449 G1V 1 5858 4.83 4
Kepler-92 Lyra 19 16 21.0 +41° 33′ 47″ 11.6 1463 G1IV 1.209 5871 5.52 3
Kepler-450 Cygnus 19 41 56.8 +51° 00′ 49″ 11.684 1487 F 1.19 6152 unknown 3
Kepler-89 Cygnus 19 49 20.0 +41° 53′ 28″ 12.4 1580 F8V 1.25 6116 3.9 4 Farthest F-type main sequence star from the Sun with a multiplanetary system. One study found hints of additional planets orbiting Kepler-89.
Kepler-1388 Lyra 18 53 20.6 +47° 10′ 28″ 1604 0.63 4098 unknown 4 -
K2-282 Pisces 00 53 43.6833 07° 59′ 43.1397″ 14.04 1638 G?V 0.94 5499±109 unknown 3
Kepler-107 Cygnus 19 48 06.8 +48° 12′ 31″ 12.7 1714 G2V 1.238 5851 4.29 4 -
Kepler-1047 Cygnus 19 14 35.1 +50° 47′ 20″ 1846 G2V 1.08 5754 unknown 3 -
Kepler-55 Lyra 19 00 40.0 +44° 01′ 35″ 16.3 1888 K 0.62 4362 unknown 5 Planet c may orbit in the inner habitable zone.
Kepler-166 Cygnus 19 32 38.4 +48° 52′ 52″ 1968 G 0.88 5413 unknown 3
Kepler-11 Cygnus 19 48 27.62 +41° 54′ 32.9″ 13.69 2150 ±20 G6V 0.954 5681 7.834 6 Farthest star from the Sun with exactly six exoplanets. First system discovered with six transiting planets. The planets have low densities.
Kepler-1254 Draco 19 34 59.3 +45° 06′ 26″ 2205 0.78 4985 unknown 3 -
Kepler-289 Cygnus 19 49 51.7 +42° 52′ 58″ 12.9 2283 G0V 1.08 5990 0.65 3 -
Kepler-85 Cygnus 19 23 54.0 +45° 17′ 25″ 15.0 2495 G 0.92 5666 unknown 4
Kepler-157 Lyra 19 24 23.3 +38° 52′ 32″ 2523 G2V 1.02 5774 unknown 3
Kepler-342 Cygnus 19 24 23.3 +38° 52′ 32″ 2549 F 1.13 6175 unknown 4
Kepler-148 Cygnus 19 19 08.7 +46° 51′ 32″ 2580 K?V 0.86 5272 unknown 3
Kepler-51 Cygnus 19 45 55.0 +49° 56′ 16″ 15.0 2610 G?V 1 5803 unknown 3 Super-puff planets with some of the lowest densities known.
Kepler-403 Cygnus 19 19 41.1 +46° 44′ 40″ 2741 F9IV-V 1.25 6090 unknown 3
Kepler-9 Lyra 19 02 17.76 +38° 24′ 03.2″ 13.91 2754 G2V 0.998 5722 3.008 3 -
Kepler-23 Cygnus 19 36 52.0 +49° 28′ 45″ 14 2790 G5V 1.11 5760 unknown 3 -
Kepler-46 Cygnus 19 17 05.0 +42° 36′ 15″ 15.3 2795 K?V 0.902 5155 9.9 3 -
Kepler-305 Cygnus 19 56 53.83 +40° 20′ 35.46″ 15.812 2833 K 0.85 4918 unknown 3 (1)
Kepler-90 Draco 18 57 44.0 +49° 18′ 19″ 14.0 2840 ± 40 G0V 1.13 5930 2 8 All eight exoplanets are more massive than Earth and are within 1.1 AU of the parent star. Only star apart from the Sun with at least eight planets. A Hill stability test shows that the system is stable. Planet h orbits in the habitable zone.
Kepler-150 Lyra 19 12 56.2 +40° 31′ 15″ 2906 G?V 0.97 5560 unknown 5 Planet f orbits in the habitable zone.
Kepler-82 Cygnus 19 31 29.61 +42° 57′ 58.09″ 15.158 2949 G?V 0.91 5512 unknown 4
Kepler-154 Cygnus 19 19 07.3 +49° 53′ 48″ 2985 G3V 0.98 5690 unknown 5
Kepler-56 Cygnus 19 35 02.0 +41° 52′ 19″ 13 3060 K?III 1.32 4840 3.5 3
Kepler-350 Lyra 19 01 41.0 +39° 42′ 22″ 13.8 3121 F 1.03 6215 unknown 3
Kepler-603 Cygnus 19 37 07.4 +42° 17′ 27″ 3134 G2V 1.01 5808 unknown 3 -
Kepler-401 Cygnus 19 20 19.9 +50° 51′ 49″ 3149 F8V 1.17 6117 unknown 3
Kepler-58 Cygnus 19 45 26.0 +39° 06′ 55″ 15.3 3161 G1V 1.04 5843 unknown 3
Kepler-79 Cygnus 20 02 04.11 +44° 22′ 53.69″ 13.914 3329 F 1.17 6187 unknown 4
Kepler-60 Cygnus 19 15 50.70 +42° 15′ 54.04″ 13.959 3343 G 1.04 5915 unknown 3
Kepler-122 19 24 26.9 +39° 56′ 57″ 3351 F 1.08 6050 unknown 4
Kepler-279 Lyra 19 09 34.0 +42° 11′ 42″ 13.7 3383 F 1.1 6562 unknown 3
Kepler-255 Cygnus 19 44 15.4 +45° 58′ 37″ 3433 G6V 0.9 5573 unknown 3
Kepler-47 Cygnus 19 41 11.5 +46° 55′ 13.69″ 15.178 3442 G
M
1.043 5636(A)
(B is unknown)
4.5 3 Circumbinary planets, with one of the planets orbiting in the habitable zone.
Kepler-292 19 43 03.84 +43° 25′ 27.4″ 13.97 3446 K0V 0.85 5299 unknown 5
Kepler-27 Cygnus 19 28 56.82 +41° 05′ 9.15″ 15.855 3500 G5V 0.65 5400 unknown 2 (1)
Kepler-351 Lyra 19 05 48.6 +42° 39′ 28″ 3535 G?V 0.89 5643 unknown 3
Kepler-276 Cygnus 19 34 16 +39° 02′ 11″ 15.368 3734 G?V 1.1 5812 unknown 3
Kepler-70 Cygnus 19 45 25 41° 05′ 34″ 14.87 3849 sdB 0.496 27730 unknown 2 (1) Later research did not indicate that these planets existed. Kepler-70 is a subdwarf B star, and was a red giant 20 million years ago. Planets b and c have the closest orbits to each other of any two exoplanets, and planet b is the hottest known exoplanet, with a temperature of 7288 K.
Kepler-24 Lyra 19 21 39.18 +38° 20′ 37.51″ 14.925 3910 G1V 1.03 5800 unknown 4 -
Kepler-87 Cygnus 19 51 40.0 +46° 57′ 54″ 15 4021 G4IV 1.1 5600 7.5 2 (1) Farthest system from the Sun with an unconfirmed exoplanet candidate.
Kepler-33 Lyra 19 16 18.61 +46° 00′ 18.8″ 13.988 4090 G1IV 1.164 5849 4.27 5
Kepler-282 Lyra 18 58 43.0 +44° 47′ 51″ 15.2 4363 G?V 0.97 5876 unknown 4
Kepler-758 Cygnus 19 32 20.3 +41° 08′ 08″ 4413 1.16 6228 unknown 4 Farthest system from the Sun with exactly four confirmed exoplanets.
Kepler-53 Lyra 19 21 51.0 +40° 33′ 45″ 16 4455 G?V 0.98 5858 unknown 3
Kepler-30 Lyra 19 01 08.07 +38° 56′ 50.21″ 15.403 4560 G6V 0.99 5498 unknown 3
Kepler-84 Cygnus 19 53 00.49 +40° 29′ 45.87″ 14.764 4700 G3IV 1 5755 unknown 5
Kepler-31 Cygnus 19 36 06.0 +45° 51′ 11″ 15.5 5429 F 1.21 6340 unknown 3 The three planets are in an orbital resonance.
Kepler-238 Lyra 19 11 35 +40° 38′ 16″ 15.084 5867 G5IV 1.06 5614 unknown 5 One of the farthest systems from the Sun with a multiplanetary system, and the farthest system where exoplanets were discovered by the Kepler space telescope.
Kepler-245 Cygnus 19 26 33.4 +42° 26′ 11″ 0.8 5100 unknown 4
Kepler-218 Cygnus 19 41 39.1 +46° 15′ 59″ unknown 5502 unknown 3
Kepler-217 Cygnus 19 32 09.1 +46° 16′ 39″ unknown 6171 unknown 3
Kepler-192 Lyra 19 11 40.3 +45° 35′ 34″ unknown 5479 unknown 3
Kepler-191 Cygnus 19 24 44.0 +45° 19′ 23″ 0.85 5282 unknown 3
Kepler-176 Cygnus 19 38 40.3 +43° 51′ 12″ unknown 5232 unknown 4
Kepler-167 Cygnus 19 30 38.0 +38° 20′ 43″ 0.76 4796 unknown 4
Kepler-431 Lyra 18 44 26.9 +43° 13′ 40″ 1.071 6004 unknown 3
Kepler-338 Lyra 18 51 54.9 +40° 47′ 04″ 1.1 5923 unknown 4
Kepler-197 Cygnus 19 40 54.3 +50° 33′ 32″ unknown 6004 unknown 4
Kepler-247 Lyra 19 14 34.2 +43° 02′ 21″ 0.884 5094 unknown 3
Kepler-104 Lyra 19 10 25.1 +42° 10′ 00″ 0.81 5711 unknown 3 -
Kepler-126 Cygnus 19 17 23.4 +44° 12′ 31″ unknown 6239 unknown 3 -
Kepler-127 Lyra 19 00 45.6 +46° 01′ 41″ unknown 6106 unknown 3 -
Kepler-130 Lyra 19 13 48.2 +40° 14′ 43″ 1 5884 unknown 3 -
Kepler-164 Lyra 19 11 07.4 +47° 37′ 48″ 1.11 5888 unknown 3 -
Kepler-171 Cygnus 19 47 05.3 +41° 45′ 20″ unknown 5642 unknown 3 -
Kepler-172 Lyra 19 47 05.3 +41° 45′ 20″ 0.86 5526 unknown 4 -
Kepler-149 Lyra 19 03 24.9 +38° 23′ 03″ unknown 5381 unknown 3
Kepler-148 Cygnus 19 19 08.7 +46° 51′ 32″ unknown 5272 unknown 3
Kepler-142 Cygnus 19 40 28.5 +48° 28′ 53″ 0.99 5790 unknown 3
Kepler-124 Draco 19 07 00.7 +49° 03′ 54″ unknown 4984 unknown 3
Kepler-402 Lyra 19 13 28.9 +43° 21′ 17″ unknown 6090 unknown 4
Kepler-399 Cygnus 19 58 00.4 +40° 40′ 15″ unknown 5502 unknown 3
Kepler-374 Cygnus 19 36 33.1 +42° 22′ 14″ 0.84 5977 unknown 3
Kepler-372 Cygnus 19 25 01.5 +49° 15′ 32″ 1.15 6509 unknown 3
Kepler-363 Lyra 18 52 46.1 +41° 18′ 19″ 1.23 5593 unknown 3
Kepler-359 Cygnus 19 33 10.5 +42° 11′ 47″ 1.07 6248 unknown 3
Kepler-357 Cygnus 19 24 58.3 +44° 00′ 31″ 0.78 5036 unknown 3
Kepler-354 Lyra 19 03 00.4 +41° 20′ 08″ 0.65 4648 unknown 3
Kepler-206 Lyra 19 26 32.3 +41° 50′ 02″ 0.94 5764 unknown 3
Kepler-203 Cygnus 19 01 23.3 +41° 45′ 43″ 0.98 5821 unknown 3
Kepler-194 Cygnus 19 27 53.1 +47° 51′ 51″ unknown 6089 unknown 3
Kepler-184 Lyra 19 27 48.5 +43° 04′ 29″ unknown 5788 unknown 3
Kepler-178 Lyra 19 08 24.3 +46° 53′ 47″ unknown 5676 unknown 3
Kepler-336 Lyra 19 20 57.0 +41° 19′ 53″ 0.89 5867 unknown 3
Kepler-334 Lyra 19 08 33.8 +47° 06′ 55″ 1 5828 unknown 3
Kepler-332 Lyra 19 06 39.1 +47° 24′ 49″ 0.8 4955 unknown 3
Kepler-331 Lyra 19 27 20.2 +39° 18′ 26″ 0.51 4347 unknown 3
Kepler-327 Cygnus 19 30 34.2 44° 05′ 16″ 0.55 3799 unknown 3
Kepler-326 Cygnus 19 37 18.1 +46° 00′ 08″ 0.98 5105 unknown 3
Kepler-325 Cygnus 19 19 20.5 +49° 49′ 32″ 0.87 5752 unknown 3
EPIC 201085153 Virgo 12 00 29.4845 −7° 7′ 48″ 17.33 unknown 3945±386 unknown 2 (1)
  • Need to be added: TOI 1130, EPIC 249893012

Stars orbited by both planets and brown dwarfs

Stars orbited by objects on both sides of the 13 Jupiter mass dividing line.

Planetary system statistics

Planets
per star
Number
of stars
Star list
8 2
7 1
6 8
5 21
4 60
3 154
2 + unconfirmed 22

See also

For links to specific lists of exoplanets see:

Online archives:


References

  1. Schneider, Jean (6 December 2016). "Interactive Extra-solar Planets Catalog". The Extrasolar Planets Encyclopaedia. Retrieved 2016-12-06.
  2. ^ Tuomi, Mikko (6 April 2012). "Evidence for 9 planets in the 10180 system". Astronomy & Astrophysics. 543: A52. arXiv:1204.1254v1. Bibcode:2012A&A...543A..52T. doi:10.1051/0004-6361/201118518. S2CID 15876919.
  3. Brewer, John M.; Wang, Songhu; Fischer, Debra A.; Foreman-Mackey, Daniel (2018-10-24). "Compact multi-planet systems are more common around metal poor hosts". The Astrophysical Journal. 867 (1). L3. arXiv:1810.10009. Bibcode:2018ApJ...867L...3B. doi:10.3847/2041-8213/aae710. S2CID 67832557.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR online data catalog: General catalogue of variable stars (Samus+ 2007–2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
  5. ^ Mascareño, A. Suárez; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; Hernández, J. I. González; Rebolo, R.; Cristiani, S.; Pepe, F.; Santos, N. C.; Osorio, M. R. Zapatero; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas, F.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Prieto, C. Allende; Alves, D.; Amate, M.; Avila, G.; Baldini, V.; Bandi, T.; Barros, S. C. C.; Bianco, A.; Benz, W.; Bouchy, F.; Broeng, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D’Odorico, V.; Deiries, S.; Delabre, B.; Marcantonio, P. Di; Dumusque, X.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Santos, R. Génova; Hughes, I.; Iwert, O.; Kerber, F.; Knusdstrup, J.; Landoni, M.; Lavie, B.; Lillo-Box, J.; Lizon, J.; Curto, G. Lo; Maire, C.; Manescau, A.; Martins, C. J. a. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pallé, E.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Tschudi, S. Santana; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Sousa, S.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, F. (1 July 2020). "Revisiting Proxima with ESPRESSO". Astronomy & Astrophysics. 639: A77. arXiv:2005.12114. Bibcode:2020A&A...639A..77S. doi:10.1051/0004-6361/202037745. ISSN 0004-6361. S2CID 218869742. }}
  6. Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N.; Luque, R.; et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887", Science, 368 (6498): 1477–1481, arXiv:2006.16372, Bibcode:2020Sci...368.1477J, doi:10.1126/science.aaz0795, PMID 32587019, S2CID 220075207
  7. Pozuelos, Francisco J.; Suárez, Juan C.; de Elía, Gonzalo C.; Berdiñas, Zaira M.; Bonfanti, Andrea; Dugaro, Agustín; et al. (2020). "GJ 273: On the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec". Astronomy & Astrophysics. 641: A23. arXiv:2006.09403. Bibcode:2020A&A...641A..23P. doi:10.1051/0004-6361/202038047. S2CID 219721292. GJ 273 is a planetary system orbiting an M dwarf only 3.75 pc away, composed of two confirmed planets, GJ 273b and GJ 273c, and two promising candidates, GJ 273d and GJ 273e ... the system remained stable only for values of inclinations ranging from 90◦ to ∼72◦
  8. Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics. 602. A88. arXiv:1703.05386. Bibcode:2017A&A...602A..88A. doi:10.1051/0004-6361/201630153. S2CID 119418595.
  9. "Two Nearby Habitable Worlds? - Planetary Habitability Laboratory @ UPR Arecibo". phl.upr.edu. Retrieved 2020-10-07.
  10. "Four Exoplanets Detected around Nearby Star Tau Ceti | Astronomy | Sci-News.com". Breaking Science News | Sci-News.com. Retrieved 2020-10-07.
  11. Henry, Todd J. (October 1, 2006). "The One Hundred Nearest Star Systems". Research Consortium on Nearby Stars. Archived from the original on November 28, 2006. Retrieved 2006-12-11.
  12. Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S.; Hidalgo Soto, D.; Strachan, J.B.P.; Hambsch, F-J.; López-González, M. J.; Morales, N.; Rodríguez López, C.; Berdiñas, Z. M.; Ribas, I.; Pallé, E.; Reiners, Ansgar; Anglada-Escudé, G. (2019-08-13). "Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061". Monthly Notices of the Royal Astronomical Society. arXiv:1908.04717. doi:10.1093/mnras/staa248. S2CID 199551874.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  13. Davison, Cassy L.; White, Russel J.; Henry, Todd J.; Riedel, Adric R.; Jao, Wei-Chun; Bailey III, John I.; Quinn, Samuel N.; Justin R., Cantrell; John P., Subasavage; Jen G., Winters (2015). "A 3D Search for Companions to 12 Nearby M-Dwarfs". The Astronomical Journal. 149 (3): 106. arXiv:1501.05012. Bibcode:2015AJ....149..106D. doi:10.1088/0004-6256/149/3/106. S2CID 9719725.
  14. Stuart Gary (17 December 2015). "Potentially habitable super-Earth discovered orbiting star 14 light years from Earth". ABC News (Australia).
  15. Kane, Stephen R.; et al. (February 2017), "Characterization of the Wolf 1061 Planetary System", The Astrophysical Journal, 835 (2): 9, arXiv:1612.09324, Bibcode:2017ApJ...835..200K, doi:10.3847/1538-4357/835/2/200, S2CID 30738573, 200.{{citation}}: CS1 maint: unflagged free DOI (link)
  16. Jones, Barrie W.; et al. (2005). "Prospects for Habitable "Earths" in Known Exoplanetary Systems". The Astrophysical Journal. 622 (2): 1091–1101. arXiv:astro-ph/0503178. Bibcode:2005ApJ...622.1091J. doi:10.1086/428108.
  17. Wyatt, M. C.; et al. (2012). "Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems". Monthly Notices of the Royal Astronomical Society. 424 (2): 1206. arXiv:1206.2370. Bibcode:2012MNRAS.tmp.3237W. doi:10.1111/j.1365-2966.2012.21298.x. S2CID 54056835.{{cite journal}}: CS1 maint: bibcode (link)
  18. Kennedy, G. M.; Matra, L.; Marmier, M.; Greaves, J. S.; Wyatt, M. C.; Bryden, G.; Holland, W.; Lovis, C.; Matthews, B. C.; Pepe, F.; Sibthorpe, B.; Udry, S. (2015). "Kuiper belt structure around nearby super-Earth host stars". Monthly Notices of the Royal Astronomical Society. 449 (3): 3121. arXiv:1503.02073. Bibcode:2015MNRAS.449.3121K. doi:10.1093/mnras/stv511. S2CID 53638901.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. "Reanalysis of data suggests 'habitable' planet GJ 581d really could exist". Astronomy Now. 9 March 2015. Retrieved 27 May 2015.
  20. Anglada-Escudé, Guillem; Arriagada, Pamela; Vogt, Steven S.; Rivera, Eugenio J.; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Minniti, Dante; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S. (2012). "A Planetary System around the nearby M Dwarf GJ 667C with At Least One Super-Earth in Its Habitable Zone". The Astrophysical Journal Letters. 751 (1). L16. arXiv:1202.0446. Bibcode:2012ApJ...751L..16A. doi:10.1088/2041-8205/751/1/L16. S2CID 16531923.
  21. Anglada-Escudé, Guillem; et al. (2013-06-07). "A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone" (PDF). Astronomy & Astrophysics. 556: A126. arXiv:1306.6074. Bibcode:2013A&A...556A.126A. doi:10.1051/0004-6361/201321331. S2CID 14559800. Archived from the original (PDF) on 2013-06-30. Retrieved 2013-06-25.
  22. Makarov, Valeri V.; Berghea, Ciprian (2013). "Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets. The Case of Gj 667C". The Astrophysical Journal. 780 (2): 124. arXiv:1311.4831. doi:10.1088/0004-637X/780/2/124. S2CID 118700510.
  23. Vogt, Steven S.; et al. (November 2015). "Six Planets Orbiting HD 219134". The Astrophysical Journal. 814 (1): 12. arXiv:1509.07912. Bibcode:2015ApJ...814...12V. doi:10.1088/0004-637X/814/1/12. S2CID 45438051.
  24. Wyatt, M. C.; et al. (2012). "Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems". MNRAS. 424 (2): 1206–1223. arXiv:1206.2370. Bibcode:2012MNRAS.424.1206W. doi:10.1111/j.1365-2966.2012.21298.x. S2CID 54056835.
  25. Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series. 255 (1): 8. arXiv:2105.11583. Bibcode:2021ApJS..255....8R. doi:10.3847/1538-4365/abe23c. S2CID 235186973.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  26. Kennedy, G. M.; et al. (June 2018). "Kuiper belt analogues in nearby M-type planet-host systems". Monthly Notices of the Royal Astronomical Society. 476 (4): 4584–4591. arXiv:1803.02832. Bibcode:2018MNRAS.476.4584K. doi:10.1093/mnras/sty492.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  27. Falconer, Rebecca, Newly uncovered super-Earth 31 light-years away may be habitable, Axios, August 1, 2019
  28. Reddy, Francis; Center, NASA’s Goddard Space Flight (2019-07-31). "TESS Discovers Habitable Zone Planet in GJ 357 System". SciTechDaily. Retrieved 2019-08-01.
  29. "Potentially habitable 'super-Earth' discovered just 31 light-years away". NBC News. Retrieved 2019-08-01.
  30. Garner, Rob (2019-07-30). "NASA's TESS Helps Find Intriguing New World". NASA. Retrieved 2019-08-01.
  31. Demangeon, Oliver D. S.; Zapatero Osorio, M. R.; Alibert, Y.; Barros, S. C. C.; Adibekyan, V.; Tabernero, H. M.; et al. (July 2021). "A warm terrestrial planet with half the mass of Venus transiting a nearby star" (PDF). Astronomy & Astrophysics. 653: 38. arXiv:2108.03323. Bibcode:2021A&A...653A..41D. doi:10.1051/0004-6361/202140728. S2CID 236957385.
  32. Schweitzer, A.; et al. (May 2019). "The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars". Astronomy & Astrophysics. 625: 16. arXiv:1904.03231. Bibcode:2019A&A...625A..68S. doi:10.1051/0004-6361/201834965. S2CID 102351979. A68.
  33. Stephenson, C. B. (July 1986), "Dwarf K and M stars of high proper motion found in a hemispheric survey", The Astronomical Journal, 92: 139–165, Bibcode:1986AJ.....92..139S, doi:10.1086/114146.
  34. Lovis, Christophe; et al. (2006). "An extrasolar planetary system with three Neptune-mass planets" (PDF). Nature. 441 (7091): 305–309. arXiv:astro-ph/0703024. Bibcode:2006Natur.441..305L. doi:10.1038/nature04828. PMID 16710412. S2CID 4343578.
  35. Díaz, R. F.; et al. (2016). "The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles". Astronomy and Astrophysics. 585. A134. arXiv:1510.06446. Bibcode:2016A&A...585A.134D. doi:10.1051/0004-6361/201526729. S2CID 118531921.
  36. Tuomi, Mikko; Anglada-Escudé, Guillem; Gerlach, Enrico; Jones, Hugh R. A.; Reiners, Ansgar; Rivera, Eugenio J.; Vogt, Steven S.; Butler, R. Paul (17 December 2012). "Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307". Astronomy & Astrophysics. 549: A48. arXiv:1211.1617. Bibcode:2013A&A...549A..48T. doi:10.1051/0004-6361/201220268. S2CID 7424216.
  37. Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D.; et al. (2017). "A temperate rocky super-Earth transiting a nearby cool star". Nature. 544 (7650): 333–336. arXiv:1704.05556. Bibcode:2017Natur.544..333D. doi:10.1038/nature22055. PMID 28426003. S2CID 2718408.
  38. Overbye, Dennis (19 April 2017). "A new exoplanet may be most promising yet in search for life". New York Times. Retrieved 20 April 2017.
  39. Méndez, Abel (August 29, 2012). "A Hot Potential Habitable Exoplanet around Gliese 163". University of Puerto Rico at Arecibo (Planetary Habitability Laboratory). Retrieved September 20, 2012.
  40. Redd, Nola Taylor (September 20, 2012). "Newfound Alien Planet a Top Contender to Host Life". Space.com. Retrieved September 20, 2012.
  41. Fulton, Benjamin J.; et al. (2015). "Three Super-Earths Orbiting HD 7924". The Astrophysical Journal. 805 (2): 175. arXiv:1504.06629. Bibcode:2015ApJ...805..175F. doi:10.1088/0004-637X/805/2/175. S2CID 7969255.
  42. Damasso, M.; et al. (2020), "A precise architecture characterization of the π Mensae planetary system", Astronomy & Astrophysics, 642: A31, arXiv:2007.06410, Bibcode:2020A&A...642A..31D, doi:10.1051/0004-6361/202038416, S2CID 220496034
  43. Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics. 602. A88. arXiv:1703.05386. Bibcode:2017A&A...602A..88A. doi:10.1051/0004-6361/201630153. S2CID 119418595.
  44. Lo Curto, G.; et al. (March 2013), "The HARPS search for southern extra-solar planets. XXXII. New multi-planet systems in the HARPS volume limited sample: a super-Earth and a Neptune in the habitable zone", Astronomy & Astrophysics, 551: 7, arXiv:1301.2741, Bibcode:2013A&A...551A..59L, doi:10.1051/0004-6361/201220415, A59.
  45. Koerner, D. W.; et al. (February 2010), "New Debris Disk Candidates Around 49 Nearby Stars" (PDF), The Astrophysical Journal Letters, 710 (1): L26 – L29, Bibcode:2010ApJ...710L..26K, doi:10.1088/2041-8205/710/1/L26.
  46. ^ Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; Kaspar von Braun; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B. (2016). "Three Temperate Neptunes Orbiting Nearby Stars". The Astrophysical Journal. 830 (1): 46. arXiv:1607.00007. Bibcode:2016ApJ...830...46F. doi:10.3847/0004-637X/830/1/46. S2CID 36666883.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  47. Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal, 132 (1): 161–170, arXiv:astro-ph/0603770, Bibcode:2006AJ....132..161G, doi:10.1086/504637, S2CID 119476992
  48. Lee, Man Hoi; et al. (2006). "On the 2:1 Orbital Resonance in the HD 82943 Planetary System". The Astrophysical Journal. 641 (2): 1178–1187. arXiv:astro-ph/0512551. Bibcode:2006ApJ...641.1178L. doi:10.1086/500566. S2CID 119432579.
  49. "The Harsh Destiny of a Planet?" (Press release). Garching, Germany: European Southern Observatory. May 9, 2001. Retrieved December 30, 2012.
  50. Andreolo, Claire; Cofield, Calla; Kazmierczak, Jeanette (6 January 2020). "NASA Planet Hunter Finds Earth-Size Habitable-Zone World". NASA. Retrieved 6 January 2020.
  51. Garner, Rob (6 January 2020). "NASA Planet Hunter Finds Earth-Size Habitable-Zone World". NASA. Retrieved 6 January 2020.
  52. Wall, Mike (6 January 2020). "NASA's TESS Planet Hunter Finds Its 1st Earth-Size World in 'Habitable Zone'". Space.com. Retrieved 6 January 2020.
  53. Vogt, Steven S.; et al. (2005). "Five New Multicomponent Planetary Systems" (PDF). The Astrophysical Journal. 632 (1): 638–658. Bibcode:2005ApJ...632..638V. doi:10.1086/432901. Retrieved 2020-12-11.
  54. Hébrard, Guillaume; Arnold, Luc; Forveille, Thierry; Correia, Alexandre C. M.; Laskar, Jacques; Bonfils, Xavier; Boisse, Isabelle; Díaz, Rodrigo F.; Hagelberg, Janis; Sahlmann, Johannes; Santos, Nuno C.; et al. (2016-04-01). "The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen". Astronomy and Astrophysics. 588: A145. arXiv:1602.04622. Bibcode:2016A&A...588A.145H. doi:10.1051/0004-6361/201527585. ISSN 0004-6361. S2CID 55138055.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  55. Philip S. Muirhead; John Asher Johnson; Kevin Apps; Joshua A. Carter; Timothy D. Morton; Daniel C. Fabrycky; J. Sebastian Pineda; Michael Bottom; Barbara Rojas-Ayala; Everett Schlawin; Katherine Hamren; Kevin R. Covey; Justin R. Crepp; Keivan G. Stassun; Joshua Pepper; Leslie Hebb; Evan N. Kirby; Andrew W. Howard; Howard T. Isaacson; Geoffrey W. Marcy; David Levitan; Tanio Diaz-Santos; Lee Armus; James P. Lloyd (2012). "Characterizing the Cool KOIs III. KOI-961: A Small Star with Large Proper Motion and Three Small Planets". The Astrophysical Journal. 747 (2): 144. arXiv:1201.2189. Bibcode:2012ApJ...747..144M. doi:10.1088/0004-637X/747/2/144. S2CID 14889361.
  56. Three Super-Earths Found Circling Nearby Red Dwarf
  57. Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series. 255 (1): 8. arXiv:2105.11583. Bibcode:2021ApJS..255....8R. doi:10.3847/1538-4365/abe23c. S2CID 235186973.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  58. Lubin, Jack; et al. (2022). "TESS-Keck Survey. IX. Masses of Three Sub-Neptunes Orbiting HD 191939 and the Discovery of a Warm Jovian plus a Distant Substellar Companion". The Astronomical Journal. 163 (2): 101. arXiv:2108.02208. Bibcode:2022AJ....163..101L. doi:10.3847/1538-3881/ac3d38. S2CID 236924440.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  59. ^ Leleu, A.; Alibert, Y.; Hara, N. C.; Hooton, M. J.; Wilson, T. G.; Robutel, P.; Delisle, J.-B.; Laskar, J.; Hoyer, S.; Lovis, C.; Bryant, E. M.; Ducrot, E.; Cabrera, J.; Delrez, L.; Acton, J. S.; Adibekyan, V.; Allart, R.; Prieto, Allende; Alonso, R.; Alves, D.; et al. (2021-01-20). "Six transiting planets and a chain of Laplace resonances in TOI-178". Astronomy & Astrophysics. 649: A26. arXiv:2101.09260. Bibcode:2021A&A...649A..26L. doi:10.1051/0004-6361/202039767. ISSN 0004-6361. S2CID 231693292.
  60. "KOI-82". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 20 March 2022.
  61. David, Trevor J.; Cody, Ann Marie; Hedges, Christina L.; Mamajek, Eric E.; Hillenbrand, Lynne A.; Ciardi, David R.; Beichman, Charles A.; Petigura, Erik A.; Fulton, Benjamin J.; Isaacson, Howard T.; Howard, Andrew W. (August 2019). "A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau". The Astronomical Journal. 158 (2): 79. arXiv:1902.09670. Bibcode:2019AJ....158...79D. doi:10.3847/1538-3881/ab290f. ISSN 0004-6256. S2CID 119003936.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  62. Akinsanmi, B.; Santos, N. C.; Faria, J. P.; Oshagh, M.; Barros, S. C. C.; Santerne, A.; Charnoz, S. (2020-03-01). "Can planetary rings explain the extremely low density of HIP 41378 𝑓?". Astronomy & Astrophysics. 635: L8. arXiv:2002.11422. doi:10.1051/0004-6361/202037618. ISSN 0004-6361.
  63. Santerne, A.; Malavolta, L.; Kosiarek, M. R.; Dai, F.; Dressing, C. D.; Dumusque, X.; Hara, N. C.; Lopez, T. A.; Mortier, A.; Vanderburg, A.; Adibekyan, V.; Armstrong, D. J.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Berardo, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Buchhave, L. A.; Butler, R. P.; Collier Cameron, A.; Cosentino, R.; Crane, J. D.; Crossfield, I. J. M.; Damasso, M.; Deleuil, M. R.; Delgado Mena, E.; et al. (2019). "An extremely low-density and temperate giant exoplanet". arXiv:1911.07355 .
  64. Andrew Vanderburg; et al. (2016). "Five Planets Transiting a Ninth Magnitude Star". The Astrophysical Journal. 827 (1): L10. arXiv:1606.08441. Bibcode:2016ApJ...827L..10V. doi:10.3847/2041-8205/827/1/L10. S2CID 8794583.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  65. Gilliland, Ronald L.; et al. (2013). "Kepler-68: Three Planets, One with a Density Between That of Earth and Ice Giants". The Astrophysical Journal. 766 (1). 40. arXiv:1302.2596. Bibcode:2013ApJ...766...40G. doi:10.1088/0004-637X/766/1/40.
  66. Mills, Sean M.; et al. (2019). "Long-period Giant Companions to Three Compact, Multiplanet Systems". The Astronomical Journal. 157 (4). 145. arXiv:1903.07186. Bibcode:2019AJ....157..145M. doi:10.3847/1538-3881/ab0899. S2CID 119197547.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  67. Heller, René; Rodenbeck, Kai; Hippke, Michael (2019). "Transit least-squares survey. I. Discovery and validation of an Earth-sized planet in the four-planet system K2-32 near the 1:2:5:7 resonance". Astronomy and Astrophysics. 625. A31. arXiv:1904.00651. Bibcode:2019A&A...625A..31H. doi:10.1051/0004-6361/201935276.
  68. Souto, Diogo; et al. (2017). "Chemical Abundances of M-dwarfs from the APOGEE Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186". The Astrophysical Journal. 835 (2): 239. arXiv:1612.01598. Bibcode:2017ApJ...835..239S. doi:10.3847/1538-4357/835/2/239. S2CID 73634716.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  69. Bailer-Jones, C. A. L.; et al. (August 2018). "Estimating distances from parallaxes IV: Distances to 1.33 billion stars in Gaia Data Release 2". The Astronomical Journal. 156 (2): 58. arXiv:1804.10121. Bibcode:2018AJ....156...58B. doi:10.3847/1538-3881/aacb21. S2CID 119289017.{{cite journal}}: CS1 maint: unflagged free DOI (link) Distance to Kepler 186, after taking into account light extinction
  70. "Kepler-186 f". NASA Exoplanet Archive. Retrieved 19 July 2016.
  71. Quintana, E. V.; Barclay, T.; Raymond, S. N.; Rowe, J. F.; Bolmont, E.; Caldwell, D. A.; Howell, S. B.; Kane, S. R.; Huber, D.; Crepp, J. R.; Lissauer, J. J.; Ciardi, D. R.; Coughlin, J. L.; Everett, M. E.; Henze, C. E.; Horch, E.; Isaacson, H.; Ford, E. B.; Adams, F. C.; Still, M.; Hunter, R. C.; Quarles, B.; Selsis, F. (2014-04-18). "An Earth-Sized Planet in the Habitable Zone of a Cool Star". Science. 344 (6181): 277–280. arXiv:1404.5667. Bibcode:2014Sci...344..277Q. doi:10.1126/science.1249403. PMID 24744370. S2CID 1892595. free version = http://www.nasa.gov/sites/default/files/files/kepler186_main_final.pdf
  72. Christiansen, Jessie L.; Crossfield, Ian J. M.; Barentsen, Geert; Lintott, Chris J.; Barclay, Thomas; Simmons, Brooke D.; Petigura, Erik; Schlieder, Joshua E.; Dressing, Courtney D.; Vanderburg, Andrew; Ciardi, David R.; Allen, Campbell; McMaster, Adam; Miller, Grant; Veldthuis, Martin; Allen, Sarah; Wolfenbarger, Zach; Cox, Brian; Zemiro, Julia; Howard, Andrew W.; Livingston, John; Sinukoff, Evan; Catron, Timothy; Grey, Andrew; Kusch, Joshua J. E.; Terentev, Ivan; Vales, Martin; Kristiansen, Martti H. (2018-01-11). "The K2-138 System: A Near-resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists". The Astronomical Journal. 155 (2): 57. arXiv:1801.03874. Bibcode:2018AJ....155...57C. doi:10.3847/1538-3881/aa9be0. ISSN 1538-3881. S2CID 52971376.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  73. Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Rappaport, Saul A.; Schwengeler, Hans Martin (2015-10-12). "Wasp-47: A Hot Jupiter System with Two Additional Planets Discovered by K2". The Astrophysical Journal. 812 (2): L18. arXiv:1508.02411. Bibcode:2015ApJ...812L..18B. doi:10.1088/2041-8205/812/2/L18. ISSN 2041-8213. S2CID 14681933.
  74. Neveu-VanMalle, M.; et al. (2016). "Hot Jupiters with relatives: Discovery of additional planets in orbit around WASP-41 and WASP-47". Astronomy and Astrophysics. 586. A93. arXiv:1509.07750. Bibcode:2016A&A...586A..93N. doi:10.1051/0004-6361/201526965. S2CID 53354547.
  75. "WASP-47". exoplanetarchive.ipac.caltech.edu.
  76. Malavolta, Luca; et al. (2017). "The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations". The Astronomical Journal. 153 (5). 224. arXiv:1703.06885. Bibcode:2017AJ....153..224M. doi:10.3847/1538-3881/aa6897.
  77. Lissauer, Jack J; Marcy, Geoffrey W; Bryson, Stephen T; Rowe, Jason F; Jontof-Hutter, Daniel; Agol, Eric; Borucki, William J; Carter, Joshua A; Ford, Eric B; Gilliland, Ronald L; Kolbl, Rea; Star, Kimberly M; Steffen, Jason H; Torres, Guillermo (2014). "Validation Of Kepler's Multiple Planet Candidates. Ii. Refined Statistical Framework and Descriptions of Systems of Special Interest". The Astrophysical Journal. 784 (1): 44. arXiv:1402.6352. Bibcode:2014ApJ...784...44L. doi:10.1088/0004-637X/784/1/44. S2CID 119108651.
  78. ^ Barclay, Thomas; Quintana, Elisa V; Adams, Fred C; Ciardi, David R; Huber, Daniel; Foreman-Mackey, Daniel; Montet, Benjamin T; Caldwell, Douglas (2015). "The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis". The Astrophysical Journal. 809 (1): 7. arXiv:1505.01845. Bibcode:2015ApJ...809....7B. doi:10.1088/0004-637X/809/1/7. S2CID 37742564.
  79. Schneider, Jean, "Star: Kepler-25", Extrasolar Planets Encyclopaedia, Paris Observatory, archived from the original on 2012-06-16, retrieved 2013-12-18
  80. Steffen, Jason H.; et al. (2012). "Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations". Monthly Notices of the Royal Astronomical Society. 421 (3): 2342–2354. arXiv:1201.5412. Bibcode:2012MNRAS.421.2342S. doi:10.1111/j.1365-2966.2012.20467.x.
  81. Marcy, Geoffrey W.; et al. (2014). "Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets". The Astrophysical Journal Supplement Series. 210 (2). 20. arXiv:1401.4195. Bibcode:2014ApJS..210...20M. doi:10.1088/0067-0049/210/2/20.
  82. Hand, Eric (20 December 2011). "Kepler discovers first Earth-sized exoplanets". Nature. doi:10.1038/nature.2011.9688. S2CID 122575277.
  83. Nespral, D.; et al. (2017). "Mass determination of K2-19b and K2-19c from radial velocities and transit timing variations". Astronomy and Astrophysics. 601. A128. arXiv:1604.01265. Bibcode:2017A&A...601A.128N. doi:10.1051/0004-6361/201628639. S2CID 55978628.
  84. Sinukoff, Evan; et al. (2016). "Eleven Multiplanet Systems From K2 Campaigns 1 and 2 and the Masses of Two Hot Super-Earths". The Astrophysical Journal. 827 (1). 78. arXiv:1511.09213. Bibcode:2016ApJ...827...78S. doi:10.3847/0004-637X/827/1/78.
  85. ^ Borucki, William J.; et al. (18 April 2013). "Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone". Science Express. 340 (6132): 587–90. arXiv:1304.7387. Bibcode:2013Sci...340..587B. doi:10.1126/science.1234702. hdl:1721.1/89668. PMID 23599262. S2CID 21029755. Retrieved 18 March 2022.
  86. Johnson, Michele; Harrington, J.D. (18 April 2013). "NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date". NASA. Retrieved 18 March 2022.
  87. Steffen, Jason H.; Fabrycky, Daniel C.; Ford, Eric B.; Carter, Joshua A.; Desert, Jean-Michel; Fressin, Francois; Holman, Matthew J.; Lissauer, Jack J.; Moorhead, Althea V.; Rowe, Jason F.; Ragozzine, Darin; Welsh, William F.; Batalha, Natalie M.; Borucki, William J.; Buchhave, Lars A.; Bryson, Steve; Caldwell, Douglas A.; Charbonneau, David; Ciardi, David R.; Cochran, William D.; Endl, Michael; Everett, Mark E.; Gautier III, Thomas N.; Gilliland, Ron L.; Girouard, Forrest R.; Jenkins, Jon M.; Horch, Elliott; Howell, Steve B.; Isaacson, Howard; et al. (2012), Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations, arXiv:1201.5412, doi:10.1111/j.1365-2966.2012.20467.x, S2CID 11898578
  88. Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G. (2016), "An overabundance of low-density Neptune-like planets", Monthly Notices of the Royal Astronomical Society, 466 (2): 1868–1879, arXiv:1611.09236, doi:10.1093/mnras/stw3103, S2CID 119408956{{citation}}: CS1 maint: unflagged free DOI (link)
  89. Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Christa Van Laerhoven; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi (2015), Secure TTV Mass Measurements: Ten Kepler Exoplanets between 3 and 8 M🜨 with Diverse Densities and Incident Fluxes, arXiv:1512.02003, doi:10.3847/0004-637X/820/1/39, S2CID 11322397{{citation}}: CS1 maint: unflagged free DOI (link)
  90. "Kepler-80". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 10 January 2017.
  91. Xie, J.-W. (2013). "Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems". Astrophysical Journal Supplement Series. 208 (2): 22. arXiv:1208.3312. Bibcode:2013ApJS..208...22X. doi:10.1088/0067-0049/208/2/22. S2CID 17160267.
  92. ^ Shallue, C. J.; Vanderburg, A. (2017). "Identifying Exoplanets With Deep Learning: A Five Planet Resonant Chain Around Kepler-80 And An Eighth Planet Around Kepler-90" (PDF). The Astrophysical Journal. 155 (2): 94. arXiv:1712.05044. Bibcode:2018AJ....155...94S. doi:10.3847/1538-3881/aa9e09. S2CID 4535051. Retrieved 2017-12-15.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  93. MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi (2016-01-01). "A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets". The Astronomical Journal. 152 (4): 105. arXiv:1607.07540. Bibcode:2016AJ....152..105M. doi:10.3847/0004-6256/152/4/105. S2CID 119265122.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  94. Ekrem Murat Esmer; Baştürk, Özgür; Selim Osman Selam; Aliş, Sinan (2022), Detection of two additional circumbinary planets around Kepler-451, arXiv:2202.02118
  95. Masuda, Kento; Hirano, Teruyuki; Taruya, Atsushi; Nagasawa, Makiko; Suto, Yasushi (2013). "Characterization of the KOI-94 System with Transit Timing Variation Analysis: Implication for the Planet-Planet Eclipse". The Astrophysical Journal. 778 (2): 185–200. arXiv:1310.5771. Bibcode:2013ApJ...778..185M. doi:10.1088/0004-637X/778/2/185. S2CID 119264400.
  96. Bonomo, Aldo S.; Zeng, Li; Damasso, Mario; Leinhardt, Zoë M.; Justesen, Anders B.; Lopez, Eric; Lund, Mikkel N.; Malavolta, Luca; Silva Aguirre, Victor; Buchhave, Lars A.; Corsaro, Enrico; Denman, Thomas; Lopez-Morales, Mercedes; Mills, Sean M.; Mortier, Annelies; Rice, Ken; Sozzetti, Alessandro; Vanderburg, Andrew; Affer, Laura; Arentoft, Torben; Benbakoura, Mansour; Bouchy, François; Christensen-Dalsgaard, Jørgen; Collier Cameron, Andrew; Cosentino, Rosario; Dressing, Courtney D.; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F. M.; García, Rafael A.; Handberg, Rasmus; Harutyunyan, Avet; Johnson, John A.; Kjeldsen, Hans; Latham, David W.; Lovis, Christophe; Lundkvist, Mia S.; Mathur, Savita; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Nava, Chantanelle; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Poretti, Ennio; Sasselov, Dimitar; Ségransan, Damien; Udry, Stéphane; Watson, Chris (May 2019). "A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system". Nature Astronomy. 3 (5): 416–423. arXiv:1902.01316. Bibcode:2019NatAs...3..416B. doi:10.1038/s41550-018-0684-9. S2CID 89604609.
  97. ^ Lissauer, Jack J.; et al. (2011). "A closely packed system of low-mass, low-density planets transiting Kepler-11". Nature. 470 (7332): 53–58. arXiv:1102.0291. Bibcode:2011Natur.470...53L. doi:10.1038/nature09760. PMID 21293371. S2CID 4388001.
  98. Lissauer, Jack J.; et al. (2013). "All Six Planets Known to Orbit Kepler-11 Have Low Densities". The Astrophysical Journal. 770 (2). 131. arXiv:1303.0227. Bibcode:2013ApJ...770..131L. doi:10.1088/0004-637X/770/2/131.
  99. Libby-Roberts, Jessica E.; et al. (2020). "The Featureless Transmission Spectra of Two Super-puff Planets". The Astronomical Journal. 159 (2): 57. arXiv:1910.12988. Bibcode:2020AJ....159...57L. doi:10.3847/1538-3881/ab5d36. S2CID 204950000.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  100. Chou, Felicia; Hawkes, Alison; Landau, Elizabeth (14 December 2017). "Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling Distant Star". NASA. Retrieved 15 December 2017.
  101. Schmitt, J. R.; Wang, J.; Fischer, D. A.; Jek, K. J.; Moriarty, J. C.; Boyajian, T. S.; Schwamb, M. E.; Lintott, C.; Lynn, S.; Smith, A. M.; Parrish, M.; Schawinski, K.; Simpson, R.; LaCourse, D.; Omohundro, M. R.; Winarski, T.; Goodman, S. J.; Jebson, T.; Schwengeler, H. M.; Paterson, D. A.; Sejpka, J.; Terentev, I.; Jacobs, T.; Alsaadi, N.; Bailey, R. C.; Ginman, T.; Granado, P.; Guttormsen, K. V.; Mallia, F.; Papillon, A. L.; Rossi, F.; Socolovsky, M.; Stiak, L. (2014-06-26). "Planet Hunters. VI. An Independent Characterization of KOI-351 and Several Long Period Planet Candidates From the Kepler Archival Data". The Astronomical Journal. 148 (28): 28. arXiv:1310.5912. Bibcode:2014AJ....148...28S. doi:10.1088/0004-6256/148/2/28. S2CID 119238163.
  102. Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (2012). "Kepler-47: A Transiting Circumbinary Multi-Planet System". Science. 337 (6101): 1511–4. arXiv:1208.5489. Bibcode:2012Sci...337.1511O. doi:10.1126/science.1228380. PMID 22933522. S2CID 44970411.
  103. "NASA's Kepler Discovers Multiple Planets Orbiting a Pair of Stars". exoplanets.nasa.gov. NASA. 28 August 2012. Retrieved 2 September 2012. Kepler mission has discovered multiple transiting planets orbiting two suns for the first time
  104. Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (28 August 2012). "NASA's Kepler discovers multiple planets orbiting a pair of stars". Science. 337 (6101). Sciencedaily.com: 1511–4. arXiv:1208.5489. Bibcode:2012Sci...337.1511O. doi:10.1126/science.1228380. PMID 22933522. S2CID 44970411. Retrieved 4 November 2012.
  105. Krzesinski, J. (August 25, 2015), "Planetary candidates around the pulsating sdB star KIC 5807616 considered doubtful", Astronomy & Astrophysics, 581, Bibcode:2015A&A...581A...7K, doi:10.1051/0004-6361/201526346
  106. Blokesz, A.; Krzesinski, J.; Kedziora-Chudczer, L. (4 July 2019), "Analysis of putative exoplanetary signatures found in light curves of two sdBV stars observed by Kepler", Astronomy & Astrophysics, 627: A86, arXiv:1906.03321, Bibcode:2019A&A...627A..86B, doi:10.1051/0004-6361/201835003, S2CID 182952925
  107. ^ jarrettkong (2013-10-23). "Kepler-70b: The Remnant of a Time Long Past". PC 120: Life in the Universe. Retrieved 2022-02-24.
  108. Pichierri, Gabriele; Batygin, Konstantin; Morbidelli, Alessandro (2019), "The role of dissipative evolution for three-planet, near-resonant extrasolar systems", Astronomy & Astrophysics, 625: A7, arXiv:1903.09474, Bibcode:2019A&A...625A...7P, doi:10.1051/0004-6361/201935259, S2CID 85459759
  109. Campante, T. L.; Barclay, T.; Swift, J. J.; Huber, D.; Adibekyan, V. Zh.; Cochran, W.; Burke, C. J.; Isaacson, H.; Quintana, E. V.; Davies, G. R.; Silva Aguirre, V.; Ragozzine, D.; Riddle, R.; Baranec, C.; Basu, S.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Bedding, T. R.; Handberg, R.; Stello, D.; Brewer, J. M.; Hekker, S.; Karoff, C.; Kolbl, R.; Law, N. M.; Lundkvist, M.; Miglio, A.; Rowe, J. F.; et al. (2015). "An ancient extrasolar system with five sub-Earth-size planets". The Astrophysical Journal. 799 (2): 170. arXiv:1501.06227. Bibcode:2015ApJ...799..170C. doi:10.1088/0004-637X/799/2/170. S2CID 5404044.
Exoplanets
Main topics
Sizes
and
types
Terrestrial
Gaseous
Other types
Formation
and
evolution
Systems
Host stars
Detection
Habitability
Catalogues
Lists
Other
Portals: Categories: