Misplaced Pages

Imaginary number

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 2001:569:7fed:8c00:645c:b5d8:8742:c4c6 (talk) at 02:56, 3 October 2022 (The word “add” is misleading because a complex number is a composite of a real and an imaginary, and there is no adding being done even though the + sign is used. My edit is meant to avoid using the word “add” which is misleading.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 02:56, 3 October 2022 by 2001:569:7fed:8c00:645c:b5d8:8742:c4c6 (talk) (The word “add” is misleading because a complex number is a composite of a real and an imaginary, and there is no adding being done even though the + sign is used. My edit is meant to avoid using the word “add” which is misleading.)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) An accepted version of this page, accepted on 3 October 2022, was based on this revision.Real number multiplied by the square root of -1 "Imaginary Numbers" redirects here. For the 2013 EP by The Maine, see Imaginary Numbers (EP).

All powers of i assume values
from blue area
i = i
i = −1
i = −i
i = 1
i = i
i = −1
i = −i
i = 1
i = i
i = −1
i is a 4th root of unity

An imaginary number is a real number multiplied by the imaginary unit i, which is defined by its property i = −1. The square of an imaginary number bi is −b. For example, 5i is an imaginary number, and its square is −25. By definition, zero is considered to be both real and imaginary.

Originally coined in the 17th century by René Descartes as a derogatory term and regarded as fictitious or useless, the concept gained wide acceptance following the work of Leonhard Euler (in the 18th century) and Augustin-Louis Cauchy and Carl Friedrich Gauss (in the early 19th century).

An imaginary number bi can be joined to a real number a using a plus sign (+) to form a complex number of the form a + bi, where the real numbers a and b are called, respectively, the real part and the imaginary part of the complex number.

History

Main article: History of complex numbers
An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis.

Although the Greek mathematician and engineer Hero of Alexandria is noted as the first to present a calculation involving the square root of a negative number, it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572. The concept had appeared in print earlier, such as in work by Gerolamo Cardano. At the time, imaginary numbers and negative numbers were poorly understood and were regarded by some as fictitious or useless, much as zero once was. Many other mathematicians were slow to adopt the use of imaginary numbers, including René Descartes, who wrote about them in his La Géométrie in which he coined the term imaginary and meant it to be derogatory. The use of imaginary numbers was not widely accepted until the work of Leonhard Euler (1707–1783) and Carl Friedrich Gauss (1777–1855). The geometric significance of complex numbers as points in a plane was first described by Caspar Wessel (1745–1818).

In 1843, William Rowan Hamilton extended the idea of an axis of imaginary numbers in the plane to a four-dimensional space of quaternion imaginaries in which three of the dimensions are analogous to the imaginary numbers in the complex field.

Geometric interpretation

90-degree rotations in the complex plane

Geometrically, imaginary numbers are found on the vertical axis of the complex number plane, which allows them to be presented perpendicular to the real axis. One way of viewing imaginary numbers is to consider a standard number line positively increasing in magnitude to the right and negatively increasing in magnitude to the left. At 0 on the x-axis, a y-axis can be drawn with "positive" direction going up; "positive" imaginary numbers then increase in magnitude upwards, and "negative" imaginary numbers increase in magnitude downwards. This vertical axis is often called the "imaginary axis" and is denoted i R , {\displaystyle i\mathbb {R} ,} I , {\displaystyle \mathbb {I} ,} or ℑ.

In this representation, multiplication by –1 corresponds to a rotation of 180 degrees about the origin, which is a half circle. Multiplication by i corresponds to a rotation of 90 degrees about the origin which is a quarter of a circle. Both these numbers are roots of 1 {\displaystyle 1} : 1 2 = 1 {\displaystyle -1^{2}=1} , i 4 = 1 {\displaystyle i^{4}=1} . In the field of complex numbers, for every n N {\displaystyle n\in \mathbb {N} } , 1 {\displaystyle 1} has n {\displaystyle n} th roots φ n {\displaystyle \varphi _{n}} , meaning φ n n = 1 {\displaystyle \varphi _{n}^{n}=1} , called roots of unity. Multiplying by the first n {\displaystyle n} th root of unity causes a rotation of 360 n {\displaystyle {\frac {360}{n}}} degrees about the origin.

Multiplying by a complex number is the same as rotating around the origin by the complex number's argument, followed by a scaling by its magnitude.

Square roots of negative numbers

Care must be used when working with imaginary numbers that are expressed as the principal values of the square roots of negative numbers:

6 = 36 = ( 4 ) ( 9 ) 4 9 = ( 2 i ) ( 3 i ) = 6 i 2 = 6. {\displaystyle 6={\sqrt {36}}={\sqrt {(-4)(-9)}}\neq {\sqrt {-4}}{\sqrt {-9}}=(2i)(3i)=6i^{2}=-6.}

That is sometimes written as:

1 = i 2 = 1 1 =  (fallacy)  ( 1 ) ( 1 ) = 1 = 1. {\displaystyle -1=i^{2}={\sqrt {-1}}{\sqrt {-1}}{\stackrel {\text{ (fallacy) }}{=}}{\sqrt {(-1)(-1)}}={\sqrt {1}}=1.}

The fallacy occurs as the equality x y = x y {\displaystyle {\sqrt {xy}}={\sqrt {x}}{\sqrt {y}}} fails when the variables are not suitably constrained. In that case, the equality fails to hold as the numbers are both negative, which can be demonstrated by:

x y = i x   i y = i 2 x y = x y x y , {\displaystyle {\sqrt {-x}}{\sqrt {-y}}=i{\sqrt {x}}\ i{\sqrt {y}}=i^{2}{\sqrt {x}}{\sqrt {y}}=-{\sqrt {xy}}\neq {\sqrt {xy}},}

where both x and y are positive real numbers.

See also

Number systems
Complex : C {\displaystyle :\;\mathbb {C} }
Real : R {\displaystyle :\;\mathbb {R} }
Rational : Q {\displaystyle :\;\mathbb {Q} }
Integer : Z {\displaystyle :\;\mathbb {Z} }
Natural : N {\displaystyle :\;\mathbb {N} }
Zero: 0
One: 1
Prime numbers
Composite numbers
Negative integers
Fraction
Finite decimal
Dyadic (finite binary)
Repeating decimal
Irrational
Algebraic irrational
Irrational period
Transcendental
Imaginary

Notes

  1. j is usually used in engineering contexts where i has other meanings (such as electrical current)

References

  1. Uno Ingard, K. (1988). "Chapter 2". Fundamentals of Waves and Oscillations. Cambridge University Press. p. 38. ISBN 0-521-33957-X.
  2. Weisstein, Eric W. "Imaginary Number". mathworld.wolfram.com. Retrieved 2020-08-10.
  3. Sinha, K.C. (2008). A Text Book of Mathematics Class XI (Second ed.). Rastogi Publications. p. 11.2. ISBN 978-81-7133-912-9.
  4. Giaquinta, Mariano; Modica, Giuseppe (2004). Mathematical Analysis: Approximation and Discrete Processes (illustrated ed.). Springer Science & Business Media. p. 121. ISBN 978-0-8176-4337-9. Extract of page 121
  5. Aufmann, Richard; Barker, Vernon C.; Nation, Richard (2009). College Algebra: Enhanced Edition (6th ed.). Cengage Learning. p. 66. ISBN 978-1-4390-4379-0.
  6. Hargittai, István (1992). Fivefold Symmetry (2 ed.). World Scientific. p. 153. ISBN 981-02-0600-3.
  7. Roy, Stephen Campbell (2007). Complex Numbers: lattice simulation and zeta function applications. Horwood. p. 1. ISBN 978-1-904275-25-1.
  8. Descartes, René, Discours de la méthode (Leiden, (Netherlands): Jan Maire, 1637), appended book: La Géométrie, book three, p. 380. From page 380: "Au reste tant les vrayes racines que les fausses ne sont pas tousjours reelles; mais quelquefois seulement imaginaires; c'est a dire qu'on peut bien tousjours en imaginer autant que jay dit en chasque Equation; mais qu'il n'y a quelquefois aucune quantité, qui corresponde a celles qu'on imagine, comme encore qu'on en puisse imaginer trois en celle cy, x – 6xx + 13x – 10 = 0, il n'y en a toutefois qu'une reelle, qui est 2, & pour les deux autres, quoy qu'on les augmente, ou diminue, ou multiplie en la façon que je viens d'expliquer, on ne sçauroit les rendre autres qu'imaginaires." (Moreover, the true roots as well as the false are not always real; but sometimes only imaginary ; that is to say, one can always imagine as many of them in each equation as I said; but there is sometimes no quantity that corresponds to what one imagines, just as although one can imagine three of them in this , x – 6xx + 13x – 10 = 0, only one of them however is real, which is 2, and regarding the other two, although one increase, or decrease, or multiply them in the manner that I just explained, one would not be able to make them other than imaginary .)
  9. Martinez, Albert A. (2006), Negative Math: How Mathematical Rules Can Be Positively Bent, Princeton: Princeton University Press, ISBN 0-691-12309-8, discusses ambiguities of meaning in imaginary expressions in historical context.
  10. Rozenfeld, Boris Abramovich (1988). "Chapter 10". A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space. Springer. p. 382. ISBN 0-387-96458-4.
  11. von Meier, Alexandra (2006). Electric Power Systems – A Conceptual Introduction. John Wiley & Sons. pp. 61–62. ISBN 0-471-17859-4. Retrieved 2022-01-13.
  12. Webb, Stephen (2018). "5. Meaningless marks on paper". Clash of Symbols – A Ride Through the Riches of Glyphs. Springer Science+Business Media. pp. 204–205. doi:10.1007/978-3-319-71350-2_5. ISBN 978-3-319-71350-2.
  13. Kuipers, J. B. (1999). Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton University Press. pp. 10–11. ISBN 0-691-10298-8. Retrieved 2022-01-13.
  14. Nahin, Paul J. (2010). An Imaginary Tale: The Story of "i" [the square root of minus one]. Princeton University Press. p. 12. ISBN 978-1-4008-3029-9. Extract of page 12

Bibliography

External links

Complex numbers
Number systems
Sets of definable numbers
Composition algebras
Split
types
Other hypercomplex
Infinities and infinitesimals
Other types
Category: