This is an old revision of this page, as edited by Sadi Carnot (talk | contribs) at 04:17, 9 January 2006 (→External links: formatted). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 04:17, 9 January 2006 by Sadi Carnot (talk | contribs) (→External links: formatted)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Thermodynamics (from the Greek thermos meaning heat and dynamis meaning power) is a branch of physics that studies the effects of changes in temperature, pressure, and volume on physical systems at the macroscopic scale by analyzing the collective motion of their particles using statistics. Roughly, heat means "energy in transit" and dynamics relates to "movement"; thus, in essence thermodynamics studies the movement of energy and how energy instills movement. Historically, thermodynamics developed out of the need to increase the efficiency of early steam engines.
The starting point for most thermodynamic considerations are the laws of thermodynamics, which postulate that energy can be exchanged between physical systems as heat or work. They also postulate the existence of a quantity named entropy, which can be defined for any system. In thermodynamics, interactions between large ensembles of objects are studied and categorized. Central to this are the concepts of system and surroundings. A system is composed of particles, whose average motions define its properties, which in turn are related to one another through equations of state. Properties can be combined to express internal energy and thermodynamic potentials are usefull for determining conditions for equilibrium and spontaneous processes.
With these tools, thermodynamics describes how systems respond to changes in their surroundings. This can be applied to a wide variety of topics in science and engineering, such as engines, phase transitions, chemical reactions, transport phenomena, and even black holes. The results of thermodynamics are essential for other fields of physics and for chemistry, chemical engineering, cell biology, biomedical engineering, materials science, to name a few.
History
Main article: History of thermodynamicsA short history of thermodynamics begins with the British physicist and chemist Robert Boyle who in 1656, in coordination with English scientist Robert Hooke, invented the air pump. Using this pump, Boyle and Hooke noticed the pressure-temperature-volume correlation. In time, the ideal gas law was formulated. Soon thereafter, in 1679, based on these concepts, an associate of Boyle's named Denis Papin built a bone digester, which is a closed vessel with a tightly fitting lid that confines steam until a high pressure is generated.
Later designs implemented a steam release valve to keep the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a piston and cylinder engine. He did not however follow through with his design. Nevertheless, in 1698, based on Papin’s designs, engineer Thomas Savery built the first engine. These early engines being crude and inefficient attracted the attention of the leading scientists of the time. One such scientist was Sadi Carnot, the “father of thermodynamics”, who in 1824 published “Reflections on the Motive Power of Fire”, a discourse on heat, power, and engine efficiency. This marks the start of thermodynamics as a modern science.
Statistical thermodynamics
Statistical thermodynamics is an approach to thermodynamics based on statistical mechanics, which focuses on the derivation of macroscopic results from first principles. It can be opposed to its historical precedor phenomenological thermodynamics, which gives scientific descriptions of phenomena with avoidance of full interpretation, explanation, and evaluation. The statistical apporach attempts to restate them in terms of other, molecular processes.
Thermodynamic systems
Main article: System (thermodynamics)Of most importance in thermodynamics is the concept of the “system”. A system is the region of the universe under study. A system is separated from the remainder of the universe by a boundary which may be imaginary or not, but which, by convention delimits a finite volume. The possible exchanges of work, heat, or matter between the system and the surroundings take place across this boundary. There are four dominate classes of systems:
- Isolated Systems – matter and energy may not cross the boundary.
- Adiabatic Systems – heat and matter may not cross the boundary.
- Closed Systems – matter may not cross the boundary.
- Open Systems – heat, work, and matter may cross the boundary.
For closed systems, as time goes by, internal differences in the system tend to even out; pressures and temperatures tend to equalize, as do density differences. A system in which all equalizing processes have gone practically to completion, is considered to be in a state of thermodynamic equilibrium.
In thermodynamic equilibrium, a system's properties are, by definition, unchanging in time. Systems in equilibrium are much simpler and easier to understand than systems which are not in equilibrium. Often, when analyzing a thermodynamic process, it can be assumed that each intermediate state in the process is at equilibrium. This will also considerably simplify the situation. Thermodynamic processes which develop so slowly as to allow each intermediate step to be an equilibrium state are said to be reversible processes.
Thermodynamic parameters
Main article: Conjugate variables (thermodynamics)The central concept of thermodynamics is that of energy, the ability to do work. As stipulated by the first law, the total energy of the system and its surroundings is conserved. It may be transferred into a body by heating, compression, or addition of matter, and extracted from a body either by expansion, cooling, or extraction of matter. Just as in mechanics, energy transfer is effected by a force causing a displacement, with the product of the two being the amount of energy transferred. In a similar way, thermodynamic systems can be thought of as transferring energy as the result of a generalized force causing a generalized displacement, with the product of the two being the amount of energy transferred. These thermodynamic force-displacement pairs are known as conjugate variables. The most common conjugate thermodynamic variables are pressure-volume (mechanical parameters), temperature-entropy (thermal parameters), and chemical potential-particle number (material parameters).
Thermodynamic instruments
Main article: Thermodynamic instrumentsThere are two types of thermodynamic instruments, the meter and the reservoir. A thermodynamic meter is any device which measures any parameter of a thermodynamic system. In some cases, the thermodynamic parameter is actually defined in terms of an idealized measuring instrument. For example, the zeroth law states that if two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other. This principle, as noted by James Maxwell in 1872, asserts that it is possible to measure temperature. An idealized thermometer is a sample of an ideal gas at constant pressure. From the ideal gas law PV=NRT, the volume of such a sample can be used as an indicator of temperature; in this manner it defines temperature. Although pressure is defined mechanically, a pressure-measuring device, called a barometer may also be constructed from a sample of an ideal gas held at a constant temperature. A calorimeter is a device which is used to measure and define the internal energy of a system.
A thermodynamic reservoir is a system which is so large that it does not appreciably alter its state parameters when brought into contact with the test system. It is used to impose a particular value of a state parameter upon the system. For example, a pressure reservoir is a system at a particular pressure, which imposes that pressure upon any test system that it is mechanically connected to. The earths atmosphere is often used as a pressure reservoir.
Thermodynamic states
Main article: Thermodynamic stateWhen a system is at equilibrium under a given set of conditions, it is said to be in a definite state. The state of the system can be described by a number of intensive variables and extensive variables. The properties of the system can be described by an equation of state which specifies the relationship between these variables. State may be thought of as the instantaneous quantitative description of a system with a set number of variables held constant.
Thermodynamic processes
Main article: Thermodynamic processesA thermodynamic process may be defined as the energetic evolution of a thermodynamic system proceeding from an initial state to a final state. Typically, each thermodynamic process is distinguished from other processes, in energetic character, according to what parameters, as temperature, pressure, or volume, etc., are held fixed. Furthermore, it is useful to group these processes into pairs, in which each variable held constant is one member of a conjugate pair. The five most common thermodynamic processes are shown below:
- An isobaric process occurs at constant pressure.
- An isochoric process occurs at constant volume.
- An isothermal process occurs at a constant temperature.
- An isentropic process occurs at a constant entropy.
- An adiabatic process occurs without loss or gain of heat.
The laws of thermodynamics
Main article: Laws of thermodynamicsIn thermodynamics, there are four laws of very general validity, and as such they do not depend on the details of the interactions or the systems being studied. Hence, they can be applied to systems about which one knows nothing other than the balance of energy and matter transfer. Examples of this include Einstein's prediction of spontaneous emission around the turn of the 20th century and current research into the thermodynamics of black holes.
The four laws are:
- If two thermodynamic systems A and B are in thermal equilibrium, and B and C are also in thermal equilibrium, then A and C are in thermal equilibrium.
- First law of thermodynamics, or a statement about the conservation of energy
- The increase in the internal energy of a system is equal to the amount of energy added to the system by heating, minus the amount lost in the form of work done by the system on its surroundings.
- The total entropy of any isolated thermodynamic system tends to increase over time, approaching a maximum value.
- As a system approaches absolute zero of temperature all processes cease and the entropy of the system approaches a minimum value or zero for the case of a perfect crystalline substance.
Thermodynamic potentials
Main article: Thermodynamic potentialsAs derived from the energy balance equation on a thermodynamic system there exist energetic quantities called thermodynamic potentials, being the quantitative measure of the stored energy in the system. The four most well known potentials are:
Internal energy | |
Helmholtz free energy | |
Enthalpy | |
Gibbs free energy |
Potentials are used to measure energy changes in systems as they evolve from an initial state to a final state. The potential used depends on the constraints of the system, such as constant temperature or pressure. Internal energy is the internal energy of the system, enthalpy is the internal energy of the system plus the energy related to pressure-volume work, and Helmholtz and Gibbs free energy are the energies available in a system to do useful work when the temperature and volume or the pressure and temperature are fixed, respectively.
Quotes & humor
Main article: Quotes & humor (thermodynamics)- A common scientific joke expresses the three laws simply and surprisingly accurately as:
- Zeroth: "You must play the game."
- First: "You can't win."
- Second: "You can't break even."
- Third: "You can't quit the game."
See also
- History of thermodynamics
- Legendre transformation
- Nonequilibrium thermodynamics
- Onsager reciprocal relations - sometimes called the Fourth Law of Thermodynamics
- Philosophy of thermal and statistical physics
- Statistical Mechanics
- Thermodynamic equations
- Thermodynamic properties
Related lists and timelines
- List of important publications in thermodynamics
- List of notable textbooks in statistical mechanics
- Timeline of thermodynamics, statistical mechanics, and random processes
Related fields
- Calorimetry
- Fluid dynamics
- Phase equilibrium
- Thermal analysis
- Thermochemistry (also known as chemical thermodynamics)
- Biological thermodynamics
- Black hole thermodynamics
- Philosophy of thermal and statistical physics
Wikibooks
References
- . ISBN 0198565526.
{{cite book}}
: Missing or empty|title=
(help); Unknown parameter|Author=
ignored (|author=
suggested) (help); Unknown parameter|Publisher=
ignored (|publisher=
suggested) (help); Unknown parameter|Title=
ignored (|title=
suggested) (help); Unknown parameter|Year=
ignored (|year=
suggested) (help) - . ISBN 0716710889.
{{cite book}}
: Missing or empty|title=
(help); Unknown parameter|Author=
ignored (|author=
suggested) (help); Unknown parameter|Publisher=
ignored (|publisher=
suggested) (help); Unknown parameter|Title=
ignored (|title=
suggested) (help); Unknown parameter|Year=
ignored (|year=
suggested) (help) - . ISBN 0073107689.
{{cite book}}
: Missing or empty|title=
(help); Unknown parameter|Author=
ignored (|author=
suggested) (help); Unknown parameter|Publisher=
ignored (|publisher=
suggested) (help); Unknown parameter|Title=
ignored (|title=
suggested) (help); Unknown parameter|Year=
ignored (|year=
suggested) (help)
External links
|
Major branches of physics | |
---|---|
Divisions | |
Approaches | |
Classical | |
Modern | |
Interdisciplinary | |
Related |