Misplaced Pages

Sodium cyclopentadienide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Luckas-bot (talk | contribs) at 14:44, 4 October 2011 (r2.7.1) (Robot: Adding vi:Natri xiclopentađienua). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 14:44, 4 October 2011 by Luckas-bot (talk | contribs) (r2.7.1) (Robot: Adding vi:Natri xiclopentađienua)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Sodium cyclopentadienide
Names
Other names sodium cyclopentadienylide, cyclopentadienylsodium
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.023.306 Edit this at Wikidata
EC Number
  • 225-636-8
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C5H5.Na/c1-2-4-5-3-1;/h1-5H;/q-1;+1Key: OHUVHDUNQKJDKW-UHFFFAOYSA-N
  • InChI=1S/C5H5.Na/c1-2-4-5-3-1;/h1-5H;/q-1;+1
  • Key: OHUVHDUNQKJDKW-UHFFFAOYSA-N
SMILES
  • .c1ccc1
Properties
Chemical formula C5H5Na
Molar mass 88.085 g·mol
Solubility in water Reacts
Solubility in tetrahydrofuran Soluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Sodium cyclopentadienide is an organosodium compound with the formula C5H5Na. The compound is often abbreviated as NaCp or CpNa, where Cp is the cyclopentadienide anion. Cp is also used as an abbreviation for the cyclopentadienyl ligand in coordination chemistry.

Preparation

Sodium cyclopentadienide is commercially available as a solution in THF. It is prepared by treating cyclopentadiene with sodium:

2 Na + 2 C5H6 → 2 NaC5H5 + H2

Commonly, the conversion is conducted by heating a suspension of molten sodium in dicyclopentadiene. In former times, the sodium was provided in the form of "sodium wire" or "sodium sand", a fine dispersion of sodium prepared by melting sodium in refluxing xylene and rapidly stirring, was common. Sodium hydride is a convenient base:

NaH + C5H6 → NaC5H5 + H2

In early work, Grignard reagents were used as bases. With a pKa of 15, cyclopentadiene can be deprotonated by many reagents.

The nature of NaCp depends strongly its medium and for the purposes of planning syntheses, the reagent is often represented as a salt NaC5H5. Crystalline solvent-free NaCp, which is rarely encountered, is a "polydecker" sandwich complex, consisting of an infinite chain of alternating Na centers sandwiched between μ-η:η-C5H5 ligands. As a solution in donor solvents, NaCp is highly solvated, especially at the alkali metal as suggested by the isolability of the adduct Na(tmeda)Cp.

Applications

Sodium cyclopentadienide is a common reagent for the preparation of metallocenes. For example, the preparation of ferrocene and zirconocene dichloride:

2 NaC5H5 + FeCl2 → Fe(C5H5)2 + 2 NaCl
ZrCl4(thf)2 + 2 NaCp → Cp2ZrCl2 + 2 NaCl + 2 THF

References

  1. International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSCIUPAC. ISBN 0-85404-438-8. p. 262. Electronic version.
  2. Cotton, F. Albert; Wilkinson, Geoffrey (1988), Advanced Inorganic Chemistry (5th ed.), New York: Wiley-Interscience, p. 139, ISBN 0-471-84997-9
  3. Tarun K. Panda, Michael T. Gamer, Peter W. Roesky "An Improved Synthesis of Sodium and Potassium Cyclopentadienide" Organometallics, 2003, 22, 877–878.doi:10.1021/om0207865
  4. ^ Wilkinson, Geoffrey (1963). "Ferrocene". Organic Syntheses; Collected Volumes, vol. 4, p. 473.
  5. Partridge, John J.; Chadha, Naresh K.; Uskokovic, Milan R. (1990). "An asymmetric hydroboration of 5-substituted cyclopentadienes: synthesis of methyl (1R,5R)-5-hydroxy-2-cyclopentene-1-acetate". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 7, p. 339.
  6. Girolami, G. S.; Rauchfuss, T. B. and Angelici, R. J., Synthesis and Technique in Inorganic Chemistry, University Science Books: Mill Valley, CA, 1999.ISBN 0935702482
  7. Robert E. Dinnebier, Ulrich Behrens, and Falk Olbrich (1997). "Solid State Structures of Cyclopentadienyllithium, -sodium, and -potassium. Determination by High-Resolution Powder Diffraction". Organometallics. 16: 3855–3858. doi:10.1021/om9700122.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Elschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim. ISBN 978-3-29390-6
  9. Wilkinson, G.; Birmingham, J. G. (1954). "Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta". J. Am. Chem. Soc. 76 (17): 4281–84. doi:10.1021/ja01646a008.{{cite journal}}: CS1 maint: multiple names: authors list (link)
Categories: