Misplaced Pages

Wi-Fi

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by AnomieBOT (talk | contribs) at 00:32, 14 October 2011 (Dating maintenance tags: {{Update after}}). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 00:32, 14 October 2011 by AnomieBOT (talk | contribs) (Dating maintenance tags: {{Update after}})(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) For the radio station, see WIFI (AM).
This article may be confusing or unclear to readers. Please help clarify the article. There might be a discussion about this on the talk page. (September 2010) (Learn how and when to remove this message)
Wi-Fi logo

Wi-Fi (/ˈwaɪfaɪ/) is a mechanism for wirelessly connecting electronic devices. A device enabled with Wi-Fi, such as a personal computer, video game console, smartphone, or digital audio player, can connect to the Internet via a wireless network access point. An access point (or hotspot) has a range of about 20 meters (65 ft) indoors and a greater range outdoors. Multiple overlapping access points can cover large areas.

"Wi-Fi" is a trademark of the Wi-Fi Alliance and the brand name for products using the IEEE 802.11 family of standards. Wi-Fi is used by over 700 million people. There are over four million hotspots (places with Wi-Fi Internet connectivity) around the world, and about 800 million new Wi-Fi devices are sold every year. Wi-Fi products that complete Wi-Fi Alliance interoperability certification testing successfully may use the "Wi-Fi CERTIFIED" designation and trademark.

Uses

To connect to a Wi-Fi LAN, a computer has to be equipped with a wireless network interface controller. The combination of computer and interface controller is called a station. All stations share a single radio frequency communication channel. Transmissions on this channel are received by all stations within range. The hardware does not signal the user that the transmission was delivered and is therefore called a best-effort delivery mechanism. A carrier wave is used to transmit the data in packets, referred to as "Ethernet frames". Each station is constantly tuned in on the radio frequency communication channel to pick up available transmissions.

Internet access

A Wi-Fi-enabled device, such as a personal computer, video game console, smartphone or digital audio player, can connect to the Internet when within range of a wireless network connected to the Internet. The coverage of one or more (interconnected) access points—called hotspots—comprises an area as small as a few rooms or as large as many square miles. Coverage in the larger area may depend on a group of access points with overlapping coverage. Wi-Fi technology has been used successfully in wireless mesh networks in London, UK, for example.

Wi-Fi provides service in private homes and offices as well as in public spaces at Wi-Fi hotspots set up either free-of-charge or commercially. Organizations and businesses, such as airports, hotels, and restaurants, often provide free-use hotspots to attract or assist clients. Enthusiasts or authorities who wish to provide services or even to promote business in selected areas sometimes provide free Wi-Fi access. As of 2008 more than 300 city-wide Wi-Fi (Muni-Fi) projects had been created. As of 2010 the Czech Republic had 1150 Wi-Fi based wireless Internet service providers.

Routers that incorporate a digital subscriber line modem or a cable modem and a Wi-Fi access point, often set up in homes and other buildings, provide Internet access and internetworking to all devices tuned into them, wirelessly or via cable. With the emergence of MiFi and WiBro (a portable Wi-Fi router) people can easily create their own Wi-Fi hotspots that connect to Internet via cellular networks. Now iPhone, Android, Bada and Symbian phones can create wireless connections.

One can also connect Wi-Fi devices in ad-hoc mode for client-to-client connections without a router. Wi-Fi also connects places normally without network access, such as kitchens and garden sheds.

City-wide Wi-Fi

Further information: Municipal wireless network
An outdoor Wi-Fi access point

In the early 2000s, many cities around the world announced plans to construct city-wide Wi-Fi networks. Doing so proved to be more difficult than envisioned, and as a result most of these projects were either cancelled or placed on indefinite hold. A few were successful; for example, in 2005 Sunnyvale, California, became the first city in the United States to offer city-wide free Wi-Fi, and Minneapolis has generated $1.2 million in profit annually for its provider.

In May 2010, London, UK, Mayor Boris Johnson pledged to have London-wide Wi-Fi by 2012. Islington in London already has extensive outdoor Wi-Fi coverage.

In 2010 Mysore became India's first Wi-fi-enabled city and second in the world after Jerusalem. A company called WiFiyNet has set up hotspots in Mysore, covering the complete city and a few nearbly villages.

Campus-wide Wi-Fi

Many traditional college campuses provide at least partial wireless Wi-Fi Internet coverage. Carnegie Mellon University built the first campus-wide wireless Internet network, called Wireless Andrew at its Pittsburgh campus in 1993 before Wi-Fi branding originated.

In 2000, Drexel University in Philadelphia became the United States's first major university to offer completely wireless Internet access across its entire campus.

Direct computer-to-computer communications

Wi-Fi also allows communications directly from one computer to another without an access point intermediary. This is called ad hoc Wi-Fi transmission. This wireless ad hoc network mode has proven popular with multiplayer handheld game consoles, such as the Nintendo DS, digital cameras, and other consumer electronics devices.

The disadvantage of this method is that vendors must not implement speeds greater than 11 Mbit/s(802.11b) and only WEP encryption is available, not WPA(2).

Similarly, the Wi-Fi Alliance promotes a specification called Wi-Fi Direct for file transfers and media sharing through a new discovery- and security-methodology. Wi-Fi Direct launched in October 2010.

Some devices can share their Internet connection, becoming hotspots or "virtual routers".

History

Main article: History of IEEE 802.11

802.11 technology has its origins in a 1985 ruling by the U.S. Federal Communications Commission that released the ISM band for unlicensed use. In 1991 NCR Corporation with AT&T invented the precursor to 802.11 intended for use in cashier systems. The first wireless products were under the name WaveLAN.

Vic Hayes has been called the "father of Wi-Fi". He was involved in designing the initial standards within the IEEE.

In 1992 and 1996, the CSIRO obtained patents for a method later used in Wi-Fi to "unsmear" the signal. In April 2009, 14 tech companies agreed to pay CSIRO for infringements on the CSIRO patents.

In 1999, the Wi-Fi Alliance was formed as a trade association to hold the Wi-Fi trademark under which most products are sold.

The name Wi-Fi

The term Wi-Fi suggests Wireless Fidelity, resembling the long-established audio-equipment classification term Hi-Fi (used since 1950) or high fidelity (in use since the 1930s) Even the Wi-Fi Alliance itself has often used the phrase Wireless Fidelity in its press releases and documents; the term also appears in a white paper on Wi-Fi from ITAA. However, based on Phil Belanger's statement, the term Wi-Fi was never supposed to mean anything at all.

The term Wi-Fi, first used commercially in August 1999, was coined by a brand-consulting firm called Interbrand Corporation that the Alliance had hired to determine a name that was "a little catchier than 'IEEE 802.11b Direct Sequence'". Belanger also stated that Interbrand invented Wi-Fi as a play on words with Hi-Fi, and also created the Wi-Fi logo.

The Wi-Fi Alliance initially used an advertising slogan for Wi-Fi, "The Standard for Wireless Fidelity", but later removed the phrase from their marketing. Despite this, some documents from the Alliance dated 2003 and 2004 still contain the term Wireless Fidelity. There was no official statement related to the dropping of the term.

The yin-yang Wi-Fi logo indicates the certification of a product for interoperability.

Non Wi-Fi technologies intended for fixed points such as Motorola Canopy are usually described as fixed wireless. Alternative wireless technologies include mobile phone standards such as 2G, 3G or 4G.

Wi-Fi certification

See also: Wi-Fi Alliance

The Wi-Fi Alliance enforces the use of the Wi-Fi brand to technologies based on the IEEE 802.11 standards from the Institute of Electrical and Electronics Engineers. This includes wireless local area network (WLAN) connections, device to device connectivity , Personal area network (PAN), local area network (LAN) and even some limited wide area network (WAN) connections.

Derivative terms, such as Super Wi-Fi, coined by the U.S. Federal Communications Commission (FCC) to describe proposed networking in the UHF TV band in the US, may or may not be sanctioned.

Not every Wi-Fi device is submitted for certification. The lack of Wi-Fi certification does not necessarily imply a device is incompatible with other Wi-Fi devices. If it is compliant or partly compatible, the Wi-Fi Alliance may not object to its description as a Wi-Fi device though technically only certified devices are approved.

The IEEE does not test equipment for compliance with their standards. The non-profit Wi-Fi Alliance formed in 1999 to fill this void — to establish and enforce standards for interoperability and backward compatibility, and to promote wireless local-area-network technology. As of 2010 the Wi-Fi Alliance consisted of more than 375 companies from around the world. Manufacturers with membership in the Wi-Fi Alliance, whose products pass the certification process, gain the right to mark those products with the Wi-Fi logo.

Specifically, the certification process requires conformance to the IEEE 802.11 radio standards, the WPA and WPA2 security standards, and the EAP authentication standard. Certification may optionally include tests of IEEE 802.11 draft standards, interaction with cellular-phone technology in converged devices, and features relating to security set-up, multimedia, and power-saving.

Most recently, a new security standard, Wi-Fi Protected Setup, allows embedded devices with limited graphical user interface to connect to the Internet with ease. Wi-Fi Protected Setup has 2 configurations: The Push Button configuration and the PIN configuration. These embedded devices are also called The Internet of Things and are low-power, battery-operated embedded systems. A number of Wi-Fi manufacturers design chips and modules for embedded Wi-Fi, such as GainSpan.

Wi-Fi Signal logo

Advantages and problems

A keychain-size Wi-Fi detector

Advantages

Wi-Fi allows cheaper deployment of local area networks (LANs). Also spaces where cables cannot be run, such as outdoor areas and historical buildings, can host wireless LANs.

Manufacturers are building wireless network adapters into most laptops. The price of chipsets for Wi-Fi continues to drop, making it an economical networking option included in even more devices.

Different competitive brands of access points and client network-interfaces can inter-operate at a basic level of service. Products designated as "Wi-Fi Certified" by the Wi-Fi Alliance are backwards compatible. Unlike mobile phones, any standard Wi-Fi device will work anywhere in the world.

Wi-Fi operates in more than 220,000 public hotspots and in tens of millions of homes and corporate and university campuses worldwide. The current version of Wi-Fi Protected Access encryption (WPA2) as of 2010 is widely considered secure, provided users employ a strong passphrase. New protocols for quality-of-service (WMM) make Wi-Fi more suitable for latency-sensitive applications (such as voice and video); and power saving mechanisms (WMM Power Save) improve battery operation.

Limitations

Spectrum assignments and operational limitations are not consistent worldwide: most of Europe allows for an additional two channels beyond those permitted in the U.S. for the 2.4 GHz band (1–13 vs. 1–11), while Japan has one more on top of that (1–14). Europe, as of 2007, was essentially homogeneous in this respect.

A Wi-Fi signal occupies five channels in the 2.4 GHz band; any two channels whose channel numbers differ by five or more, such as 2 and 7, do not overlap. The oft-repeated adage that channels 1, 6, and 11 are the only non-overlapping channels is, therefore, not accurate; channels 1, 6, and 11 do, however, comprise the only group of three non-overlapping channels in the U.S.

Equivalent isotropically radiated power (EIRP) in the EU is limited to 20 dBm (100 mW).

The current 'fastest' norm, 802.11n, uses double the radio spectrum compared to 802.11a or 802.11g. This means there can only be one 802.11n network on 2.4 GHz band without interference to other WLAN traffic.

The Internet protocol was designed for a wired network in which packet loss due to noise is very rare and packets are lost almost exclusively due to congestion. On a wireless network, noise is common. This difference causes TCP to greatly slow or break transmission when noise is significant, even when most packets are still arriving correctly.

Range

See also: Long-range Wi-Fi

Wi-Fi networks have limited range. A typical wireless router using 802.11b or 802.11g with a stock antenna might have a range of 32 m (120 ft) indoors and 95 m (300 ft) outdoors. IEEE 802.11n, however, can exceed that range by more than two times. Range also varies with frequency band. Wi-Fi in the 2.4 GHz frequency block has slightly better range than Wi-Fi in the 5 GHz frequency block. Outdoor ranges, through use of directional antennas, can be improved with antennas located several kilometres or more from their base. In general, the maximum amount of power that a Wi-Fi device can transmit is limited by local regulations, such as FCC Part 15 in USA.

Due to reach requirements for wireless LAN applications, Wi-Fi has fairly high power consumption compared to some other standards. Technologies such as Bluetooth (designed to support wireless PAN applications) provide a much shorter propagation range of <10m and so in general have a lower power consumption. Other low-power technologies such as ZigBee have fairly long range, but much lower data rate. The high power consumption of Wi-Fi makes battery life in mobile devices a concern.

Researchers have developed a number of "no new wires" technologies to provide alternatives to Wi-Fi for applications in which Wi-Fi's indoor range is not adequate and where installing new wires (such as CAT-5) is not possible or cost-effective. For example, the ITU-T G.hn standard for high speed Local area networks uses existing home wiring (coaxial cables, phone lines and power lines). Although G.hn does not provide some of the advantages of Wi-Fi (such as mobility or outdoor use), it's designed for applications (such as IPTV distribution) where indoor range is more important than mobility.

Due to the complex nature of radio propagation at typical Wi-Fi frequencies, particularly the effects of signal reflection off trees and buildings, algorithms can only approximately predict Wi-Fi signal strength for any given area in relation to a transmitter. This effect does not apply equally to long-range Wi-Fi, since longer links typically operate from towers that transmit above the surrounding foliage.

The practical range of Wi-Fi essentially confines mobile use to such applications as inventory-taking machines in warehouses or in retail spaces, barcode-reading devices at check-out stands, or receiving/shipping stations. Mobile use of Wi-Fi over wider ranges is limited, for instance, to uses such as in an automobile moving from one hotspot to another. Other wireless technologies are more suitable for communicating with moving vehicles.

Data security risks

The most common wireless encryption-standard, Wired Equivalent Privacy (WEP), has been shown to be easily breakable even when correctly configured. Wi-Fi Protected Access (WPA and WPA2) encryption, which became available in devices in 2003, aimed to solve this problem. Wi-Fi access points typically default to an encryption-free (open) mode. Novice users benefit from a zero-configuration device that works out-of-the-box, but this default does not enable any wireless security, providing open wireless access to a LAN. To turn security on requires the user to configure the device, usually via a software graphical user interface (GUI). On unencrypted Wi-Fi networks connecting devices can monitor and record data (including personal information), but such networks may use other means of protection, such as a VPN or secure Hypertext Transfer Protocol (HTTPS) over Transport Layer Security.

Interference

Further information: Electromagnetic interference at 2.4 GHz

Wi-Fi connections can be disrupted or the internet speed lowered by having other devices in the same area. Many 2.4 GHz 802.11b and 802.11g access-points default to the same channel on initial startup, contributing to congestion on certain channels. Wi-Fi pollution, or an excessive number of access points in the area, especially on the neighboring channel, can prevent access and interfere with other devices' use of other access points, caused by overlapping channels in the 802.11g/b spectrum, as well as with decreased signal-to-noise ratio (SNR) between access points. This can become a problem in high-density areas, such as large apartment complexes or office buildings with many Wi-Fi access points.

Additionally, other devices use the 2.4 GHz band: microwave ovens, ISM band devices, security cameras, ZigBee devices, Bluetooth devices and (in some countries) Amateur radio, video senders, cordless phones and baby monitors, all of which can cause significant additional interference. It is also an issue when municipalities or other large entities (such as universities) seek to provide large area coverage.

Hardware

Standard devices

An embedded RouterBoard 112 with U.FL-RSMA pigtail and R52 mini PCI Wi-Fi card widely used by wireless Internet service providers (WISPs) in the Czech Republic
OSBRiDGE 3GN - 802.11n Access Point and UMTS/GSM Gateway in one device
An Atheros Wi-Fi N draft adaptor with built in Bluetooth on a Sony Vaio E series laptop
USB wireless adapter

A wireless access point (WAP) connects a group of wireless devices to an adjacent wired LAN. An access point resembles a network hub, relaying data between connected wireless devices in addition to a (usually) single connected wired device, most often an ethernet hub or switch, allowing wireless devices to communicate with other wired devices.

Wireless adapters allow devices to connect to a wireless network. These adapters connect to devices using various external or internal interconnects such as PCI, miniPCI, USB, ExpressCard, Cardbus and PC Card. As of 2010, most newer laptop computers come equipped with internal adapters. Internal cards are generally more difficult to install.

Wireless routers integrate a Wireless Access Point, ethernet switch, and internal router firmware application that provides IP routing, NAT, and DNS forwarding through an integrated WAN-interface. A wireless router allows wired and wireless ethernet LAN devices to connect to a (usually) single WAN device such as a cable modem or a DSL modem. A wireless router allows all three devices, mainly the access point and router, to be configured through one central utility. This utility is usually an integrated web server that is accessible to wired and wireless LAN clients and often optionally to WAN clients. This utility may also be an application that is run on a desktop computer, as is the case with as Apple's AirPort, which is managed with the AirPort Utility on Mac OS X and Microsoft Windows.

Wireless network bridges connect a wired network to a wireless network. A bridge differs from an access point: an access point connects wireless devices to a wired network at the data-link layer. Two wireless bridges may be used to connect two wired networks over a wireless link, useful in situations where a wired connection may be unavailable, such as between two separate homes.

Wireless range-extenders or wireless repeaters can extend the range of an existing wireless network. Strategically placed range-extenders can elongate a signal area or allow for the signal area to reach around barriers such as those pertaining in L-shaped corridors. Wireless devices connected through repeaters will suffer from an increased latency for each hop. Additionally, a wireless device connected to any of the repeaters in the chain will have a throughput limited by the "weakest link" between the two nodes in the chain from which the connection originates to where the connection ends.

Distance records

Distance records (using non-standard devices) include 382 km (237 mi) in June 2007, held by Ermanno Pietrosemoli and EsLaRed of Venezuela, transferring about 3 MB of data between the mountain-tops of El Águila and Platillon. The Swedish Space Agency transferred data 420 km (260 mi), using 6 watt amplifiers to reach an overhead stratospheric balloon.

Embedded systems

Embedded serial-to-Wi-Fi module

Increasingly in the last few years (particularly as of 2007), embedded Wi-Fi modules have become available that incorporate a real-time operating system and provide a simple means of wirelessly enabling any device which has and communicates via a serial port. This allows the design of simple monitoring devices. An example is a portable ECG device monitoring a patient at home. This Wi-Fi-enabled device can communicate via the Internet.

These Wi-Fi modules are designed so that implementers need only minimal Wi-Fi knowledge to provide Wi-Fi connectivity for their products.

Multiple access points

Increasing the number of Wi-Fi access points provides network redundancy, support for fast roaming and increased overall network-capacity by using more channels or by defining smaller cells. Wi-Fi implementations have moved toward "thin" access points, with more of the network intelligence housed in a centralized network appliance, relegating individual access points to the role of "dumb" transceivers. Outdoor applications may use mesh topologies.

Network security

The main issue with wireless network security is its simplified access to the network compared to traditional wired networks such as ethernet. With wired networking one must either gain access to a building (physically connecting into the internal network) or break through an external firewall. Most business networks protect sensitive data and systems by attempting to disallow external access. Enabling wireless connectivity reduces security if the network uses inadequate or no encryption.

An attacker who has gained access to a Wi-Fi network router can initiate a DNS spoofing attack against any other user of the network by forging a response before the queried DNS server has a chance to reply.

Securing methods

A common measure to deter unauthorized users involves hiding the access point's name by disabling the SSID broadcast. While effective against the casual user, it is ineffective as a security method because the SSID is broadcast in the clear in response to a client SSID query. Another method is to only allow computers with known MAC addresses to join the network, but determined eavesdroppers may be able join the network by spoofing an authorized address.

Wired Equivalent Privacy (WEP) encryption was designed to protect against casual snooping but it is no longer considered secure. Tools such as AirSnort or Aircrack-ng can quickly recover WEP encryption keys. Because of WEP's weakness the Wi-Fi Alliance approved Wi-Fi Protected Access (WPA) which uses TKIP. WPA was specifically designed to work with older equipment usually through a firmware upgrade. Though more secure than WEP, WPA has known vulnerabilities.

The more secure WPA2 using Advanced Encryption Standard was introduced in 2004 and is supported by all new Wi-Fi devices. WPA2 is fully compatible with WPA.

Piggybacking

Main article: Piggybacking (Internet access)

Piggybacking refers to access to a wireless Internet connection by bringing one's own computer within the range of another's wireless connection, and using that service without the subscriber's explicit permission or knowledge.

During the early popular adoption of 802.11, providing open access points for anyone within range to use was encouraged to cultivate wireless community networks, particularly since people on average use only a fraction of their downstream bandwidth at any given time.

Recreational logging and mapping of other people's access points has become known as wardriving. Indeed, many access points are intentionally installed without security turned on so that they can be used as a free service. Providing access to one's Internet connection in this fashion may breach the Terms of Service or contract with the ISP. These activities do not result in sanctions in most jurisdictions; however, legislation and case law differ considerably across the world. A proposal to leave graffiti describing available services was called warchalking. A Florida court case determined that owner laziness was not to be a valid excuse.

Piggybacking often occurs unintentionally, since most access points are configured without encryption by default and operating systems can be configured to connect automatically to any available wireless network. A user who happens to start up a laptop in the vicinity of an access point may find the computer has joined the network without any visible indication. Moreover, a user intending to join one network may instead end up on another one if the latter has a stronger signal. In combination with automatic discovery of other network resources (see DHCP and Zeroconf) this could possibly lead wireless users to send sensitive data to the wrong middle-man when seeking a destination (see Man-in-the-middle attack). For example, a user could inadvertently use an insecure network to log in to a website, thereby making the login credentials available to anyone listening, if the website uses an insecure protocol such as HTTP.

Health issues

A small percentage of Wi-Fi users have reported adverse health issues after repeat exposure and use of Wi-Fi, though there has been no publication of any effects being observable in double-blind studies. A review of studies involving 725 people that claimed electromagnetic hypersensitivity found no evidence for their claims. The ubiquity of Wi-Fi has led to calls for more research into the effects of "electronic smog".

One study speculated that "laptops (Wi-Fi mode) on the lap near the testes may result in decreased male fertility". Another study found decreased working memory among males during Wi-Fi exposure.

In a BBC article, the World Health Organization (WHO) says "there is no risk from low level, long-term exposure to wi-fi networks" and the United Kingdom's Health Protection Agency reports that exposure to Wi-Fi for a year results in "same amount of radiation from a 20-minute mobile phone call."

In November 2010 research results were published however by Wageningen (Agricultural) University, The Netherlands that may indicate that electromagnetic radiation plays a role in the deteriorating health of trees. In a laboratory setting it appeared that leaves of little ash trees, after having been exposed for more than three months to radiation of so called wifi-accesspoints, wither and die.

See also

Notes

  1. Phil Belanger is the founding member of the Wi-Fi Alliance.

References

  1. "Switch on for Square Mile wi-fi". news.bbc.co.uk. 2007-04-23. Retrieved 2007-11-08.
  2. "MuniWireless " City Initiatives Directory". www.muniwireless.com. Retrieved 2008-03-12.
  3. "Wi-Fi: Poskytovatelé bezdrátového připojení". internetprovsechny.cz. Retrieved 2010-09-10.
  4. "Bezdrátové připojení k internetu". bezdratovepripojeni.cz. Retrieved 2008-05-18.
  5. "Mifi vs Joikuspot". mificlub.com. Retrieved 2010-10-09.
  6. "Sunnyvale Uses MetroFi". unstrung.com. Retrieved 2008-07-16.
  7. "Minneapolis moves ahead with wireless". The Star Tribune. December 5, 2010. Retrieved December 5, 2010. {{cite news}}: Text "Alexander, Steve and Brandt, Steve" ignored (help)
  8. "London-wide wi-fi by 2012 pledge". BBC News. 2010-05-19. Retrieved 2010-05-19.
  9. "City of London Fires Up Europe's Most Advanced Wi-Fi Network". www.govtech.com. Retrieved 2007-05-14.
  10. "London gets a mile of free Wi-Fi". .zdnet.co.uk. Retrieved 200-04-18. {{cite news}}: Check date values in: |accessdate= (help)
  11. Deb Smit (Ocotber 5, 2011). "How Wi-Fi got its start on the campus of CMU, a true story". Pop City Media. Retrieved October 6, 2011. {{cite web}}: Check date values in: |date= (help)
  12. "Wireless Andrew: Creating the World's First Wireless Campus". Carnegie Mellon University. 2007. Retrieved October 6, 2011.
  13. Wolter Lemstra; Vic Hayes; John Groenewegen (2010). The innovation journey of Wi-Fi: the road to global success. Cambridge University Press. p. 121. ISBN 978-0521199711. Retrieved October 6, 2011.
  14. "About the University". Drexel.edu. Retrieved 2011-10-14.
  15. "Ad-hoc wireless connections limited to 11mbps". Retrieved 2011-07-23.
  16. "Wi-Fi Direct allows device-to-device links".
  17. "Wi-Fi gets personal: Groundbreaking Wi-Fi Direct launches today". WiFi Alliance. 2010-10-25. Retrieved 2011-01-15.
  18. "Wireless Home Networking with Virtual WiFi Hotspot"". Techsansar.com. 2011-01-24. Retrieved 2011-10-14.
  19. "Wi-Fi (wireless networking technology)". Encyclopædia Britannica. Retrieved 2010-02-03.
  20. "CNET Vision series, December 6, 2002: "...which earned him the sobriquet of father of Wi-Fi."". News.cnet.com. 2002-12-06. Retrieved 2011-10-14.
  21. "Business Week, April 1, 2003". Businessweek.com. 2003-04-01. Retrieved 2011-10-14.
  22. David Sygall. How Australia's top scientist earned millions from Wi-Fi. The Sydney Morning Herald, December 7, 2009.
  23. Moses, Asher (June 1, 2010). "CSIRO to reap 'lazy billion' from world's biggest tech companies". The Age. Retrieved 8 June 2010.
  24. "Wi-Fi Alliance: Organization". Official industry association web site. Retrieved August 23, 2011.
  25. ^ Oxford English Dictionary (2 ed.). Oxford: Oxford University Press. 1989. ISBN 0198611862.
  26. "Wireless Ethernet Compatibility Alliance (WECA) Awards New Wi-Fi Interoperability Certification". Wi-Fi Alliance. 2000-05-08. Retrieved 2009-11-30.
  27. "Six Wi-Fi Interoperability Certifications Awarded By The Wireless Ethernet Compatibility Alliance (WECA)". Wi-Fi Alliance. 2000-07-19. Retrieved 2009-11-30.
  28. ^ "Securing Wi-Fi Wireless Networks with Today's Technologies" (PDF). Wi-Fi Alliance. 2003-02-06. Retrieved 2009-11-30.
  29. ^ "WPA Deployment Guidelines for Public Access Wi-Fi Networks" (PDF). Wi-Fi Alliance. 2004-10-28. Retrieved 2009-11-30.
  30. "Wireless Fidelity (WiFi) Technology" (PDF). ITAA. January 2004. Retrieved 2009-11-30.
  31. ^ "WiFi isn't short for "Wireless Fidelity"". boingboing.net. 2005-11-08. Retrieved 2007-08-31.
  32. ^ "Wireless Fidelity' Debunked". Wi-Fi Planet. 2007-04-27. Retrieved 2007-08-31.
  33. U.S. Patent and Trademark Office.
  34. "What is the True Meaning of Wi-Fi?". Teleclick. Retrieved 2007-08-31.
  35. The Wi-Fi Alliance also developed technology that expanded the applicability of Wi-Fi, including a simple set up protocol (Wi-Fi Protected Set Up) and a peer to peer connectivity technology (Wi-Fi Peer to Peer) "Wi-Fi Alliance: Organization". www.wi-fi.org. Retrieved 2009-10-22.
  36. "Wi-Fi Alliance: White Papers". www.wi-fi.org. Retrieved 2009-10-22.
  37. "Wi-Fi Alliance: Programs". www.wi-fi.org. Retrieved 2009-10-22.
  38. GainSpan specifically designs for Wi-Fi technology between Wi-Fi devices. Extremely useful. "GainSpan low-power, embedded Wi-Fi". www.gainspan.com. Retrieved 2010. {{cite web}}: Check date values in: |accessdate= (help)
  39. "Wi-Fi Finder". jiwire.com. Retrieved 2008-04-20.
  40. "802.11n Delivers Better Range". Wi-Fi Planet. 2007-05-31.
  41. See for example IEEE Standard 802.15.4 section 1.2 scope
  42. "WiFi Mapping Software: Footprint". Alyrica Networks, Inc. Retrieved 2008-04-27.
  43. Wilson, Tracy V. "How Municipal WiFi Works". computer.howstuffworks.com. Retrieved 2008-03-12.
  44. "Apple.com Airport Utility Product Page". Apple, Inc. Retrieved 2011-06-14.
  45. "Ermanno Pietrosemoli has set a new record for the longest communication Wi-Fi link". Retrieved 2008-03-10.
  46. "Wireless technology is irreplaceable for providing access in remote and scarcely populated regions". Retrieved 2008-03-10.
  47. "Long Distance WiFi Trial" (PDF). Retrieved 2008-03-10.
  48. "Quatech Rolls Out Airborne Embedded 802.11 Radio for M2M Market". Retrieved 2008-04-29.
  49. "CIE article on embedded Wi-Fi for M2M applications". Retrieved 2008-08-27.
  50. "802.11 X Wireless Network in a Business Environment -- Pros and Cons". NetworkBits.net. Retrieved 2008-04-08.
  51. Bernstein, Daniel J. (2002). "DNS forgery". Retrieved 2010-03-24. An attacker with access to your network can easily forge responses to your computer's DNS requests. {{cite web}}: Cite has empty unknown parameter: |month= (help)
  52. Mateti, Prabhaker (2005). "Hacking Techniques in Wireless Networks". Dayton, Ohio: Department of Computer Science and Engineering Wright State University. Retrieved 2010-02-28.
  53. "Wireless Vulnerabilities & Exploits". wirelessve.org. Retrieved 2008-04-15.
  54. "WPA2 Security Now Mandatory for Wi-Fi CERTIFIED Products" "WPA2 Security Now Mandatory for Wi-Fi CERTIFIED Products". Wi-Fi Alliance.
  55. "NoCat's goal is to bring you Infinite Bandwidth Everywhere for Free". Nocat.net. Retrieved 2011-10-14.
  56. "Let's Warchalk" (PDF). Matt Jones. Retrieved 2008-10-09.
  57. "Official website". Globalnews.ca. Retrieved 2011-10-14.
  58. ""Electromagnetic Hypersensitivity: A Systematic Review of Provocation Studies ", 2005". Psychosomaticmedicine.org. 2005-03-01. Retrieved 2011-10-14.
  59. Geoffrey Lean, "Is-the-wifi-revolution-a-health-time-bomb?", The Independent UK, Sunday, 22 April 2007
  60. Avendaño C, Mata A, Juarez Villanueva AM, Martinez VS, Sanchez Sarmiento CA (2010) “Laptop expositions affect motility and induce DNA fragmentation in human spermatozoa in vitro by a non-thermal effect: a preliminary report” American Society for Reproductive Medicine, 66th Annual Meeting: O-249.
  61. Papageorgiou CC, Hountala CD, Maganioti AE, Kyprianou MA, Rabavilas AD, Papadimitriou GN, Capsalis CN (2011) “Effects of wi-fi signals on the p300 component of event-related potentials during an auditory hayling task” J Integr Neurosci. 10(2): 189-202; PMID: 21714138.
  62. "Q&A: Wi-fi health concerns". BBC News. 2007-05-21. Retrieved 2011-10-14.
  63. "Electromagnetic Hypersensitivity (EMS)", 2011
  64. "Trees suffer from electromagnetic radiation", 2010, automatic translation in English

Further reading

External links


Internet access
Wired
Wireless PAN
Wireless LAN
Long range wireless
Wireless video and data distribution methods
Radio
Video
Data
Standards
Technologies
Related
Telecommunications
History
Pioneers
Transmission
media
Network topology
and switching
Multiplexing
Concepts
Types of network
Notable networks
Locations
Categories: