Misplaced Pages

Carbide lamp

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by JAVanfleet (talk | contribs) at 19:45, 24 January 2017. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 19:45, 24 January 2017 by JAVanfleet (talk | contribs)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) See also: Headlamp (outdoor)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Carbide lamp" – news · newspapers · books · scholar · JSTOR (July 2015) (Learn how and when to remove this message)
An acetylene gas miner's lamp

Carbide lamps, or acetylene gas lamps, are simple lamps that produce and burn acetylene (C2H2) which is created by the reaction of calcium carbide (CaC2) with water.

Acetylene gas lamps were used to illuminate buildings, as lighthouse beacons, and as headlights on motor-cars and bicycles. Portable acetylene gas lamps, worn on the hat or carried by hand, were widely used in mining in the early twentieth century. They are still employed by cavers, hunters, and cataphiles.

Mechanism

A French manufactured acetylene gas lamp, of circa 1910, mounted on a bicycle
Carbide lamp in a coal mine

A mining or caving lamp has calcium carbide placed in a lower chamber, the generator. The upper reservoir is then filled with water. A threaded valve or other mechanism is used to control the rate at which the water is allowed to drip into the chamber containing the calcium carbide. By controlling the rate of water flow, the production of acetylene gas is controlled. This, in turn, controls the flow rate of the gas and the size of the flame at the burner, and thus the amount of light it produces.

This type of lamp generally has a reflector behind the flame to help project the light forward. An acetylene gas powered lamp produces a bright, broad light. Many cavers prefer this type of unfocused light as it improves peripheral vision in the complete dark. The reaction of carbide with water produces a fair amount of heat independent of the flame. In cold caves, carbide lamp users can use this heat to help stave off hypothermia.

When all of the carbide in a lamp has been reacted, the carbide chamber contains a wet paste of slaked lime (calcium hydroxide). This is emptied into a waste bag and the chamber can be refilled.

Small carbide lamps called "carbide candles" or "smokers" are used for blackening rifle sights to reduce glare. They are used because of the sooty flame produced by acetylene.

History

In 1892, Thomas Willson discovered an economically efficient process for creating calcium carbide in an electric arc furnace from a mixture of lime and coke. The arc furnace provides the high temperature required to drive the reaction. Manufacture of calcium carbide was an important part of the industrial revolution in chemistry, and was made possible in the US as a result of massive amounts of inexpensive hydroelectric power produced at Niagara Falls before the turn of the twentieth century. In 1895, Willson sold his patent to Union Carbide. Domestic lighting with acetylene gas was introduced circa 1894 and bicycle lamps from 1896. In France, Gustave Trouvé, a Parisian electrical engineer, also made domestic acetylene lamps and gasometers.

The first carbide mining lamp developed in the United States was patented in New York on August 28, 1900 by Frederick Baldwin. Another early lamp design is shown in a patent from Duluth, Minnesota on October 21, 1902. In the early 1900s, Gustaf Dalén invented the Dalén light. This combined two of Dalén's previous inventions: the substrate Agamassan and the Sun valve. Inventions and improvements to carbide lamps continued for decades. On March 10, 1925 Andrew Prader of Spokane, Washington was granted a United States Patent, number 1,528,848 for certain new and useful improvements for Acetylene Lamps.

After carbide lamps were implicated in an Illinois coal-seam methane gas explosion that killed 54 miners, the 1932 Moweaqua Coal Mine disaster, carbide lamps were less used in United States coal mines. They continued to be used in the coal pits of other countries, notably Russia and the Ukraine.

In the birth of the cinema of Iquitos, a carbide lamp was used as light support to project the first film in the Casa de Fierro, in 1900.

Lighting systems

Advertisement for home acetylene gas lighting, 1922

Carbide lighting was used in rural and urban areas of the United States which were not served by electrification. Its use began shortly after 1900 and continued past 1950. Calcium carbide pellets were placed in a container outside the home, with water piped to the container and allowed to drip on the pellets releasing acetylene. This gas was piped to lighting fixtures inside the house, where it was burned, creating a very bright flame. Carbide lighting was inexpensive but was prone to gas leaks and explosions.

Early models of the Ford Model T automobile used carbide lamps as headlamps. Acetylene lamps were also used on riverboats for night navigation. The National Museum of Australia has a lamp made in about 1910 that was used on board PS Enterprise, a paddle steamer which has been restored to working order and also in the museum's collection.

They are also used for night hunting.

Use in caving

While LED electric lights have mostly replaced carbide lamps, some still prefer the "old-school" approach of using carbide lamps during recreational caving excursions.

Early caving enthusiasts, not yet having the advantage of light-weight electrical illumination, introduced the carbide lamp to their hobby. While increasingly replaced by more modern choices, a substantial percentage of cavers still use this method.

In cave surveys, carbide lamps are favoured for the lead or "point" surveyor, who must identify suitable points in the cave to designate as survey stations. The sooty carbide flame may be used to mark cave walls with a station label. Especially favoured for this purpose are all-brass lamps or lamps made with no ferromagnetic metals, as these lamps do not deflect the needles of a magnetic compass, which is typically read while brightly illuminated from above using the caver's lamp.

Apart from their use as cave surveying tools, many cavers favour carbide lamps for their durability and quality of illumination. They were once favoured for their relative illumination per mass of fuel compared to battery powered devices, but this advantage was largely negated with the advent of high-intensity LED illumination.

The acetylene producing reaction is exothermic, which means that the lamp's reactor vessel will become quite warm to the touch; this can be used to warm the hands. The heat from the flame can also be used to warm the body by allowing the exhaust gases to flow under a shirt pulled out from the body, a technique discovered almost immediately by cold miners.

See also

Notes

  1. Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. ISBN 0-07-049439-8.
  2. Matthews, C. E. (1996). An illuminating reaction. The Science Teacher, 63(5), 30.
  3. Using the Super Smoker. ray-vin.com. Retrieved 11 October 2015.
  4. Morehead, J. T. and de Chalmot, G. (1896). "The Manufacture of Calcium Carbide". Journal of the American Chemical Society. 18 (4): 311–331. doi:10.1021/ja02090a001.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Freeman, Horace (1919). "Manufacture of Cyanamide". The Chemical News and the Journal of Physical Science. 117: 232.
  6. U.S. patent 656,874
  7. U.S. patent 711,871
  8. Patent number 1528848
  9. Paddle Steamer Enterprise, National Museum of Australia
  10. Caving equipment and culture (from Te Ara: The Encyclopedia of New Zealand)

References

External links

Lighting
Concepts
Methods of
generation
Incandescent
Luminescent
Combustion
Electric arc
Gas discharge
High-intensity
discharge (HID)
Stationary
Portable
Automotive
  • Industrial
  • Scientific
Related topics
Mining equipment
Excavation
Tools
Blasting
Heavy machinery
Other
Transport
Vertical
Horizontal
Safety
Types of tools
Cleaning
Cutting and abrasive
Forestry
Garden
Hand
Kitchen
Machine and metalworking
Masonry
Measuring and alignment
Mining
Power
Textile
Woodworking
Categories: