Misplaced Pages

Schur product theorem

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 2601:196:200:2f5b:d59b:7b93:3927:4bf3 (talk) at 01:10, 1 May 2020 (Proof of definiteness: Made part of the proof clearer and fixed a small error in the proof.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 01:10, 1 May 2020 by 2601:196:200:2f5b:d59b:7b93:3927:4bf3 (talk) (Proof of definiteness: Made part of the proof clearer and fixed a small error in the proof.)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, particularly in linear algebra, the Schur product theorem states that the Hadamard product of two positive definite matrices is also a positive definite matrix. The result is named after Issai Schur (Schur 1911, p. 14, Theorem VII) (note that Schur signed as J. Schur in Journal für die reine und angewandte Mathematik.)

Proof

Proof using the trace formula

For any matrices M {\displaystyle M} and N {\displaystyle N} , the Hadamard product M N {\displaystyle M\circ N} considered as a bilinear form acts on vectors a , b {\displaystyle a,b} as

a ( M N ) b = tr ( M T diag ( a ) N diag ( b ) ) {\displaystyle a^{*}(M\circ N)b=\operatorname {tr} \left(M^{\textsf {T}}\operatorname {diag} \left(a^{*}\right)N\operatorname {diag} (b)\right)}

where tr {\displaystyle \operatorname {tr} } is the matrix trace and diag ( a ) {\displaystyle \operatorname {diag} (a)} is the diagonal matrix having as diagonal entries the elements of a {\displaystyle a} .

Suppose M {\displaystyle M} and N {\displaystyle N} are positive definite, and so Hermitian. We can consider their square-roots M 1 2 {\displaystyle M^{\frac {1}{2}}} and N 1 2 {\displaystyle N^{\frac {1}{2}}} , which are also Hermitian, and write

tr ( M T diag ( a ) N diag ( b ) ) = tr ( M ¯ 1 2 M ¯ 1 2 diag ( a ) N 1 2 N 1 2 diag ( b ) ) = tr ( M ¯ 1 2 diag ( a ) N 1 2 N 1 2 diag ( b ) M ¯ 1 2 ) {\displaystyle \operatorname {tr} \left(M^{\textsf {T}}\operatorname {diag} \left(a^{*}\right)N\operatorname {diag} (b)\right)=\operatorname {tr} \left({\overline {M}}^{\frac {1}{2}}{\overline {M}}^{\frac {1}{2}}\operatorname {diag} \left(a^{*}\right)N^{\frac {1}{2}}N^{\frac {1}{2}}\operatorname {diag} (b)\right)=\operatorname {tr} \left({\overline {M}}^{\frac {1}{2}}\operatorname {diag} \left(a^{*}\right)N^{\frac {1}{2}}N^{\frac {1}{2}}\operatorname {diag} (b){\overline {M}}^{\frac {1}{2}}\right)}

Then, for a = b {\displaystyle a=b} , this is written as tr ( A A ) {\displaystyle \operatorname {tr} \left(A^{*}A\right)} for A = N 1 2 diag ( a ) M ¯ 1 2 {\displaystyle A=N^{\frac {1}{2}}\operatorname {diag} (a){\overline {M}}^{\frac {1}{2}}} and thus is strictly positive for A 0 {\displaystyle A\neq 0} , which occurs if and only if a 0 {\displaystyle a\neq 0} . This shows that ( M N ) {\displaystyle (M\circ N)} is a positive definite matrix.

Proof using Gaussian integration

Case of M = N

Let X {\displaystyle X} be an n {\displaystyle n} -dimensional centered Gaussian random variable with covariance X i X j = M i j {\displaystyle \langle X_{i}X_{j}\rangle =M_{ij}} . Then the covariance matrix of X i 2 {\displaystyle X_{i}^{2}} and X j 2 {\displaystyle X_{j}^{2}} is

Cov ( X i 2 , X j 2 ) = X i 2 X j 2 X i 2 X j 2 {\displaystyle \operatorname {Cov} \left(X_{i}^{2},X_{j}^{2}\right)=\left\langle X_{i}^{2}X_{j}^{2}\right\rangle -\left\langle X_{i}^{2}\right\rangle \left\langle X_{j}^{2}\right\rangle }

Using Wick's theorem to develop X i 2 X j 2 = 2 X i X j 2 + X i 2 X j 2 {\displaystyle \left\langle X_{i}^{2}X_{j}^{2}\right\rangle =2\left\langle X_{i}X_{j}\right\rangle ^{2}+\left\langle X_{i}^{2}\right\rangle \left\langle X_{j}^{2}\right\rangle } we have

Cov ( X i 2 , X j 2 ) = 2 X i X j 2 = 2 M i j 2 {\displaystyle \operatorname {Cov} \left(X_{i}^{2},X_{j}^{2}\right)=2\left\langle X_{i}X_{j}\right\rangle ^{2}=2M_{ij}^{2}}

Since a covariance matrix is positive definite, this proves that the matrix with elements M i j 2 {\displaystyle M_{ij}^{2}} is a positive definite matrix.

General case

Let X {\displaystyle X} and Y {\displaystyle Y} be n {\displaystyle n} -dimensional centered Gaussian random variables with covariances X i X j = M i j {\displaystyle \left\langle X_{i}X_{j}\right\rangle =M_{ij}} , Y i Y j = N i j {\displaystyle \left\langle Y_{i}Y_{j}\right\rangle =N_{ij}} and independent from each other so that we have

X i Y j = 0 {\displaystyle \left\langle X_{i}Y_{j}\right\rangle =0} for any i , j {\displaystyle i,j}

Then the covariance matrix of X i Y i {\displaystyle X_{i}Y_{i}} and X j Y j {\displaystyle X_{j}Y_{j}} is

Cov ( X i Y i , X j Y j ) = X i Y i X j Y j X i Y i X j Y j {\displaystyle \operatorname {Cov} \left(X_{i}Y_{i},X_{j}Y_{j}\right)=\left\langle X_{i}Y_{i}X_{j}Y_{j}\right\rangle -\left\langle X_{i}Y_{i}\right\rangle \left\langle X_{j}Y_{j}\right\rangle }

Using Wick's theorem to develop

X i Y i X j Y j = X i X j Y i Y j + X i Y i X j Y j + X i Y j X j Y i {\displaystyle \left\langle X_{i}Y_{i}X_{j}Y_{j}\right\rangle =\left\langle X_{i}X_{j}\right\rangle \left\langle Y_{i}Y_{j}\right\rangle +\left\langle X_{i}Y_{i}\right\rangle \left\langle X_{j}Y_{j}\right\rangle +\left\langle X_{i}Y_{j}\right\rangle \left\langle X_{j}Y_{i}\right\rangle }

and also using the independence of X {\displaystyle X} and Y {\displaystyle Y} , we have

Cov ( X i Y i , X j Y j ) = X i X j Y i Y j = M i j N i j {\displaystyle \operatorname {Cov} \left(X_{i}Y_{i},X_{j}Y_{j}\right)=\left\langle X_{i}X_{j}\right\rangle \left\langle Y_{i}Y_{j}\right\rangle =M_{ij}N_{ij}}

Since a covariance matrix is positive definite, this proves that the matrix with elements M i j N i j {\displaystyle M_{ij}N_{ij}} is a positive definite matrix.

Proof using eigendecomposition

Proof of positive semidefiniteness

Let M = μ i m i m i T {\displaystyle M=\sum \mu _{i}m_{i}m_{i}^{\textsf {T}}} and N = ν i n i n i T {\displaystyle N=\sum \nu _{i}n_{i}n_{i}^{\textsf {T}}} . Then

M N = i j μ i ν j ( m i m i T ) ( n j n j T ) = i j μ i ν j ( m i n j ) ( m i n j ) T {\displaystyle M\circ N=\sum _{ij}\mu _{i}\nu _{j}\left(m_{i}m_{i}^{\textsf {T}}\right)\circ \left(n_{j}n_{j}^{\textsf {T}}\right)=\sum _{ij}\mu _{i}\nu _{j}\left(m_{i}\circ n_{j}\right)\left(m_{i}\circ n_{j}\right)^{\textsf {T}}}

Each ( m i n j ) ( m i n j ) T {\displaystyle \left(m_{i}\circ n_{j}\right)\left(m_{i}\circ n_{j}\right)^{\textsf {T}}} is positive semidefinite (but, except in the 1-dimensional case, not positive definite, since they are rank 1 matrices). Also, μ i ν j > 0 {\displaystyle \mu _{i}\nu _{j}>0} thus the sum M N {\displaystyle M\circ N} is also positive semidefinite.

Proof of definiteness

To show that the result is positive definite requires further proof. We shall show that for any vector a 0 {\displaystyle a\neq 0} , we have a T ( M N ) a > 0 {\displaystyle a^{\textsf {T}}(M\circ N)a>0} . Continuing as above, each a T ( m i n j ) ( m i n j ) T a 0 {\displaystyle a^{\textsf {T}}\left(m_{i}\circ n_{j}\right)\left(m_{i}\circ n_{j}\right)^{\textsf {T}}a\geq 0} , so it remains to show that there exist i {\displaystyle i} and j {\displaystyle j} for which corresponding term above is non-negative. For this we observe that

a T ( m i n j ) ( m i n j ) T a = ( k m i , k n j , k a k ) 2 {\displaystyle a^{\textsf {T}}(m_{i}\circ n_{j})(m_{i}\circ n_{j})^{\textsf {T}}a=\left(\sum _{k}m_{i,k}n_{j,k}a_{k}\right)^{2}}

Since N {\displaystyle N} is positive definite, there is a j {\displaystyle j} for which n j a 0 {\displaystyle n_{j}\circ a\neq 0} (since otherwise Failed to parse (unknown function "\math"): {\displaystyle n_j^\textsf{T} a = 0<\math> for all <math>j<\math>), and likewise since <math>M} is positive definite there exists an i for which Failed to parse (unknown function "\textsd"): {\displaystyle \sum m_{i,k} \circ (n_j \circ a)_k = m_i^\textsd{T} (n_j \circ a) \neq 0.} However, this last sum is just \sum_k m_{i,k} n_{j,k} a_k\right</math>. Thus its square is positive. This completes the proof.

References

  1. "Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen". Journal für die reine und angewandte Mathematik. 1911 (140): 1–28. 1911. doi:10.1515/crll.1911.140.1.
  2. Zhang, Fuzhen, ed. (2005). "The Schur Complement and Its Applications". Numerical Methods and Algorithms. 4. doi:10.1007/b105056. ISBN 0-387-24271-6. {{cite journal}}: Cite journal requires |journal= (help), page 9, Ch. 0.6 Publication under J. Schur
  3. Ledermann, W. (1983). "Issai Schur and His School in Berlin". Bulletin of the London Mathematical Society. 15 (2): 97–106. doi:10.1112/blms/15.2.97.

External links

Categories:
Schur product theorem Add topic