This is an old revision of this page, as edited by 2ndMouse (talk | contribs) at 20:52, 30 March 2007 (→Logic Programming is not universal: include co-authors). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 20:52, 30 March 2007 by 2ndMouse (talk | contribs) (→Logic Programming is not universal: include co-authors)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Logic programming (which might better be called logical programming by analogy with mathematical programming and linear programming) is, in its broadest sense, the use of mathematical logic for computer programming. Carl Hewitt et. al. have published the thesis that logic programming in this broadest sense is not universal because there there are concurrent programs that cannot be implemented in mathematical logic . In the published literature, logic programming is often used in the more restricted sense of backward chaining.
History
Logic programming can be traced at least as far back as John McCarthy's advice-taker proposal, logic is used as a purely declarative representation language, and a theorem-prover is used as the problem-solver. According to this paradigm, the problem-solving task is split between declarative knowledge expressed in classical mathematical logic and a theorem-prover, which is responsible for solving problems efficiently. McCarthy's original advice taker proposal was based on forward chaining. Allen Newell and Herbert Simon incorporated backward chaining as well. The epitome of this paradigm was uniform proof procedure resolution theorem provers . According to this paradigm, it was considered "cheating" to incorporate procedures.
This paradigm gave rise to a number of implementations, such as those by Fisher Black (1964), James Slagle (1965) and Cordell Green (1969), which were question-answering systems in the spirit of McCarthy's advice-taker. Foster and Elcock's Absys (1969), on the other hand, was one of the first languages to be explicitly developed as an assertional programming language.
Procedural Embedding of Knowledge
An alternative paradigm developed at MIT under the leadership of Seymour Papert and Marvin Minsky based on the procedural embedding of knowledge. Allen Newell and Herbert Simon had pioneered in development of the list structure for programming languages. The Lisp programming language represented a great advance with recursive procedures and automatic garbage collection. However, the procedural paradigm operated at a low level of abstraction by comparison with logic.
Planner
Main article: Planner (programming language)Carl Hewitt developed Planner as a hybrid between the procedural and logical paradigms in that it featured a procedural interpretation of logical sentences in that an implication of the form (P implies Q) can be procedurally interpreted in the following ways:
- Forward chaining (antecedently):
- If assert P, assert Q
- If assert not Q, assert not P
- Backward chaining (consequently)
- If goal Q, goal P
- If goal not P, goal not Q
In this respect, the development of Planner was influence by natural deductive logical systems (especially the one by Frederic Fitch ).
The most influential implementation of Planner was the subset of Planner, called Micro-Planner, implemented by Gerry Sussman, Eugene Charniak and Terry Winograd. It was used to implement Winograd's natural-language understanding program SHRDLU, which was a landmark at that time. At Edinburgh, Julian Davies implemented Popler which provided almost all of the features of Planner .
From Planner there developed the programming languages QA-4, Conniver, QLISP, and the concurrent language Ether used in an implementation of the Scientific Community Metaphor.
Prolog
Main article: PrologHayes and Kowalski in Edinburgh tried to reconcile the logic-based declarative approach to knowledge representation with Planner's procedural approach. Hayes (1973) developed an equational language, Golux, in which different procedures could be obtained by altering the behavior of the theorem prover.
The programming language Prolog was developed in 1972 by Alain Colmerauer. It emerged from a collaboration between Colmerauer in Marseille and Robert Kowalski in Edinburgh. Colmerauer was working on natural language understanding, using logic to represent semantics and using resolution for question-answering. During the summer of 1971, Colmerauer and Kowalski discovered that the clausal form of logic could be used to represent formal grammars and that resolution theorem provers could be used for parsing. They observed that some theorem provers, like hyper-resolution, behave as bottom-up parsers and others, like SL-resolution (1971), behave as top-down parsers.
It was in the following summer of 1972, that Kowalski, again working with Colmerauer, developed the procedural interpretation of implications. This dual declarative/procedural interpretation later became formalised in the Prolog notation
- H :- B1, …, Bn.
which can be read (and used) both declaratively as follows
- (B1 and … and Bn) implies H
and procedurally as follows:
- If goal H, goal B1 and … and goal Bn.
It also became clear that such clauses could be restricted to definite clauses or Horn clauses, where H, B1, …, Bn are all atomic predicate logic formulae, and that SL-resolution could be restricted (and generalised) to LUSH or SLD-resolution. Kowalski's procedural interpretation and LUSH were described in a 1973 memo, published in 1974.
Colmerauer, with Philippe Roussel, used this dual interpretation of clauses as the basis of Prolog, which was implemented in the summer and autumn of 1972. The first Prolog program, also written in 1972 and implemented in Marseille, was a French question-answering system. The use of Prolog as a practical programming language was given great momentum by the development of a compiler by David Warren in Edinburgh in 1977. Experiments demonstrated that Edinburgh Prolog could compete with the processing speed of other symbolic programming languages such as Lisp. However later Prolog implementations (like the Planner-like languages before them) proved unable to compete with object-oriented programming languages (e.g. Java and C# partly based on Simula ) in part because the latter could be compiled very efficiently on stock hardware. Edinburgh Prolog became the de facto standard and strongly influenced the definition of ISO standard Prolog.
A community emerged around this more narrow sense of logic programming based on the restriction to backward chaining used in Prolog. The programmer is responsible, not only for ensuring the truth of programs, but also for ensuring their efficiency. In many cases, to achieve efficiency, the programmer needs to be aware of and to exploit the problem-solving behavior of the theorem-prover. In this respect, logic programming is like conventional imperative programming, using programs to control the behaviour of a program executor. However, unlike imperative programs, which have only a procedural interpretation, logic programs also have a declarative, logical interpretation, which helps to ensure their correctness. Moreover, such programs, being declarative, are at a higher conceptual level than purely imperative programs; and their program executers, being theorem-provers, operate at a higher conceptual level than conventional compilers and interpreters.
From Prolog there developed, among others, the programming languages ALF, Fril, Gödel, Mercury, Oz, Ciao, Visual Prolog, XSB, and λProlog, as well as a variety of concurrent logic programming languages, (see Shapiro (1989) for a survey), constraint logic programming languages and datalog.
Negation as failure
Micro-Planner had a construct, called "thnot", which when applied to an expression returns the value true if (and only if) the evaluation of the expression fails. An equivalent operator is normally built-in in modern Prolog's implementations and has been called "negation as failure". It is normally written as not(p), where p is an atom whose variables normally has been instantiated by the time not(p) is invoked. A more cryptic (but standard) syntax is \+ p . Negation as failure literals can occur as conditions not(Bi) in the body of program clauses.
The logical status of negation as failure was unresolved until Keith Clark showed that, under certain natural conditions, it is a correct (and sometimes complete) implementation of classical negation with respect to the completion of the program. Completion amounts roughly to regarding the set of all the program clauses with the same predicate on the left hand side, say
- H :- Body1.
- …
- H :- Bodyk.
as a definition of the predicate
- H iff (Body1 or … or Bodyk)
where "iff" means "if and only if". Writing the completion also requires explicit use of the equality predicate and the inclusion of a set of appropriate axioms for equality. However, the implementation of negation by failure needs only the if-halves of the definitions without the axioms of equality.
The notion of completion is closely related to McCarthy's circumscription semantics for default reasoning, and to the closed world assumption.
As an alternative to the completion semantics, negation as failure can also be interpreted epistemically, as in the stable model semantics of answer set programming. In this interpretation not(Bi) means literally that Bi is not known or not believed. The epistemic interpretation has the advantage that it can be combined very simply with classical negation, as in "extended logic programming", to formalise such phrases as "the contrary can not be shown", where "contrary" is classical negation and "can not be shown" is the epistemic interpretation of negation as failure.
Logic Programming is not universal
Kowalski developed the thesis that “computation could be subsumed by deduction” which he states was first proposed by Hayes in the form “Computation = controlled deduction.” . The Hayes-Kowalski thesis that Logic Programming is universal was valuable in that it motivated further research to characterize exactly which computations could be performed by Logic Programming.
Carl Hewitt et. al. argued that mathematical models of concurrency did not determine particular concurrent computations as follows: The Actor model makes use of arbitration for determining which message is next in the arrival order of an Actor that is sent multiple messages concurrently. For example Arbiters can be used in the implementation of the arrival order of messages sent to an Actor which are subject to indeterminacy in their arrival order. Since arrival orders are in general indeterminate, they cannot be deduced from prior information by mathematical logic alone.
It is important to be clear about the basis for the published claim about the limitation of mathematical logic. It was not that individual Actors could not in general be implemented in mathematical logic. The claim is that because of the indeterminacy of the physical basis of communication in the Actor model, that no kind of deductive mathematical logic can deduce future computational steps.
Problem Solving
In the simplified, propositional case in which a logic program and a top-level atomic goal contain no variables, backward reasoning determines an and-or tree, which constitutes the search space for solving the goal. The top-level goal is the root of the tree. Given any node in the tree and any clause whose head matches the node, there exists a set of child nodes corresponding to the sub-goals in the body of the clause. These child nodes are grouped together by an "and". The alternative sets of children corresponding to alternative ways of solving the node are grouped together by an "or".
Any search strategy can be used to search this space. Prolog uses a sequential, last-in-first-out, backtracking strategy, in which only one alternative and one sub-goal is considered at a time. Other search strategies, such as parallel search, intelligent backtracking, or best-first search to find an optimal solution, are also possible.
In the more general case, where sub-goals share variables, other strategies can be used, such as choosing the subgoal that is most highly instantiated or that is sufficiently instantiated so that only one procedure applies. Such strategies are used, for example, in concurrent logic programming.
Knowledge Representation
The fact that Horn clauses can be given a procedural interpretation and, vice versa, that goal-reduction procedures can be understood as Horn clauses + backward reasoning means that logic programs combine declarative and procedural representations of knowledge. The inclusion of negation as failure means that logic programming is a kind of non-monotonic logic.
Despite its simplicity compared with classical logic, this combination of Horn clauses and negation as failure has proved to be surprisingly expressive. For example, it has been shown to correspond, with some further extensions, quite naturally to the semi-formal language of legislation. It is also a natural language for expressing common-sense laws of cause and effect, as in the situation calculus and event calculus.
Concurrent logic programming
Keith Clark, Steve Gregory, Vijay Saraswat, Udi Shapiro, Kazunori Ueda, etc. developed a family of Prolog-like concurrent message passing systems using unification of shared variables and data structure streams for messages. Efforts were made to base these systems on mathematical logic, and they were used as the basis of the Japanese Fifth Generation Project (ICOT). The Prolog-like concurrent systems were based on message passing and consequently were subject to the same indeterminacy discussed above.
Higher-order logic programming
Several researchers have extended logic programming with higher-order programming features derived from higher-order logic, such as predicate variables. Such languages include the Prolog extensions HiLog and λProlog.
Linear logic programming
Basing logic programming within linear logic has resulted in the design of logic programming languages that are considerably more expressive than those based on classical logic. Horn clause programs can only represent state change by the change in arguments to predicates. In linear logic programming, one can use the ambient linear logic to support state change. Some early designs of logic programming languages based on linear logic include LO , Lolli , ACL , and Forum . Forum provides a goal-direct interpretation of all of linear logic.
See also
- Constraint logic programming
- Datalog
- Formal methods
- Functional programming
- Programming paradigm
- Inductive logic programming
References
- John McCarthy. Programs with common sense Symposium on Mechanization of Thought Processes. National Physical Laboratory. Teddington, England. 1958.
- Fisher Black. A deductive question answering system Harvard University. Thesis. 1964.
- John Alan Robinson, “A Machine-Oriented Logic Based on the Resolution Principle.” CACM. 1965.
- James Slagle. Experiments with a Deductive Question-Answering Program CACM. December, 1965.
- Ole-Johan Dahl and Kristen Nygaard. Class and subclass declarations IFIP TC2 Conference on Simulation Programming Languages. May 1967.
- Cordell Green. Application of Theorem Proving to Problem Solving IJCAI 1969.
- Carl Hewitt. Planner: A Language for Proving Theorems in Robots IJCAI 1969.
- Gerry Sussman and Terry Winograd. Micro-planner Reference Manual AI Memo No, 203, MIT Project MAC, July 1970.
- Carl Hewitt. Procedural Embedding of Knowledge In Planner IJCAI 1971.
- Terry Winograd. Procedures as a Representation for Data in a Computer Program for Understanding Natural Language MIT AI TR-235. January 1971.
- Bruce Anderson. Documentation for LIB PICO-PLANNER School of Artificial Intelligence, Edinburgh University. 1972
- Bruce Baumgart. Micro-Planner Alternate Reference Manual Stanford AI Lab Operating Note No. 67, April 1972.
- Julian Davies. Popler 1.6 Reference Manual University of Edinburgh, TPU Report No. 1, May 1973.
- Jeff Rulifson, Jan Derksen, and Richard Waldinger. QA4, A Procedural Calculus for Intuitive Reasoning SRI AI Center Technical Note 73, November 1973.
- Robert Kowalski and Donald and Kuehner, Linear Resolution with Selection Function Artificial Intelligence, Vol. 2, 1971, pp. 227-60.
- Robert Kowalski Predicate Logic as a Programming Language Memo 70, Department of Artificial Intelligence, Edinburgh University. 1973. Also in Proceedings IFIP Congress, Stockholm, North Holland Publishing Co., 1974, pp. 569-574.
- Drew McDermott and Gerry Sussman. The Conniver Reference Manual MIT AI Memo 259A. January 1974.
- Earl Sacerdoti, et al. QLISP: A Language for the Interactive Development of Complex Systems AFIPS National Computer Conference. 1976.
- Bill Kornfeld and Carl Hewitt. The Scientific Community Metaphor IEEE Transactions on Systems, Man, and Cybernetics. January 1981.
- Bill Kornfeld. The Use of Parallelism to Implement a Heuristic Search IJCAI 1981.
- Bill Kornfeld. Parallelism in Problem Solving MIT EECS Doctoral Dissertation. August 1981.
- Bill Kornfeld. Combinatorially Implosive Algorithms CACM. 1982
- Carl Hewitt. The Challenge of Open Systems Byte Magazine. April 1985.
- Robert Kowalski. The Limitations of Logic Proceedings of the 1986 ACM fourteenth annual conference on Computer science.
- Ehud Shapiro (Editor). Concurrent Prolog MIT Press. 1987.
- Robert Kowalski. The Early Years of Logic Programming CACM. January 1988.
- Ehud Shapiro. The family of concurrent logic programming languages ACM Computing Surveys. September 1989.
- Carl Hewitt and Gul Agha. Guarded Horn clause languages: are they deductive and Logical? International Conference on Fifth Generation Computer Systems, Ohmsha 1988. Tokyo. Also in Artificial Intelligence at MIT, Vol. 2. MIT Press 1991.
- Shunichi Uchida and Kazuhiro Fuchi Proceedings of the FGCS Project Evaluation Workshop Institute for New Generation Computer Technology (ICOT). 1992.
- Carl Hewitt. The repeated demise of logic programming and why it will be reincarnated What Went Wrong and Why: Lessons from AI Research and Applications. Technical Report SS-06-08. AAAI Press. March 2006.
- J. W. Lloyd. Foundations of Logic Programming (2nd edition). Springer-Verlag 1987.
- Jean-Marc Andreoli and Remo Pareschi. Linear Objects: Logical Processes with Built-In Inheritance, Proceeding of the Seventh International Conference on Logic Programming, Jerusalem, May 1990.
- Joshua Hodas and Dale Miller. Logic Programming in a Fragment of Intuitionistic Linear Logic, Information and Computation, 1994, 110(2), 327-365.
- Naoki Kobayashi and Akinori Yonezawa. Asynchronous communication model based on linear logic, Formal Aspects of Computing, 1994, 279-294.
- Dale Miller. Forum: A Multiple-Conclusion Specification Language, Theoretical Computer Science, 1996, 165 (1), 201--232.
- Dale Miller. Overview of linear logic programming, in Linear Logic in Computer Science, edited by Thomas Ehrhard, Jean-Yves Girard, Paul Ruet, and Phil Scott. Cambridge University Press. London Mathematical Society Lecture Note, Volume 316.
- J.M. Foster and E.W. Elcock. ABSYS 1: An Incremental Compiler for Assertions: an Introduction , Machine Intelligence 4, Edinburgh U Press, 1969, pp. 423-429
- Pat Hayes. Computation and Deduction In Proceedings of the 2nd MFCS Symposium. Czechoslovak Academy of Sciences, 1973, pp. 105-118.
- Carl Hewitt (2006b) What is Commitment? Physical, Organizational, and Social COIN@AAMAS. April 27, 2006.
- Robert Kowalski. The Logical Way to be Artificially Intelligent CLIMA VI. Springer Verlag. 2006.
External links
- Logic Programming Virtual Library entry
- Bibliographies on Logic Programming
- Association for Logic Programming (ALP)
- Theory and Practice of Logic Programming journal
- Logic programming in Oz
- Prolog Development Center