Misplaced Pages

Biodiesel

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 122.50.165.32 (talk) at 19:12, 24 July 2007. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 19:12, 24 July 2007 by 122.50.165.32 (talk)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Production

Main article: Biodiesel production

Chemically, transesterified biodiesel comprises a mix of mono-alkyl esters of long chain fatty acids. The most common form uses methanol to produce methyl esters as it is the cheapest alcohol available, though ethanol can be used to produce an ethyl ester biodiesel and higher alcohols such as isopropanol and butanol have also been used. Using alcohols of higher molecular weights improves the cold flow properties of the resulting ester, at the cost of a less efficient transesterification reaction. A lipid transesterification production process is used to convert the base oil to the desired esters. Any Free fatty acids (FFAs) in the base oil are either converted to soap and removed from the process, or they are esterified (yielding more biodiesel) using an acidic catalyst. After this processing, unlike straight vegetable oil, biodiesel has combustion properties very similar to those of petroleum diesel, and can replace it in most current uses.

A byproduct of the transesterification process is the production of glycerol. For every 1 tonne of biodiesel that is manufactured, 100kg of glycerol are produced. Originally, there was a valuable market for the glycerol, which assisted the economics of the process as a whole. However, with the increase in global biodiesel production, the market price for this crude glycerol (containing 20% water and catalyst residues) has crashed. Research is being conducted globally to use this glycerol as a chemical building block. One initiative in the UK is The Glycerol Challenge.

Usually this crude glycerol has to be purified, typically by performing vacuum distillation. This is rather energy intensive. The refined glycerol (98%+ purity) can then be utilised directly, or converted into other products. The following announcements were made in 2007: A joint venture of Ashland Inc. and Cargill announced plans to make propylene glycol in Europe from glycerol and Dow Chemical announced similar plans for North America . Dow also plans to build a plant in China to make epichlorhydrin from glycerol. Epichlorhydrin is a raw material for epoxy resins.

Yields of common crops

Crop kg oil/ha litres oil/ha lbs oil/acre US gal/acre
corn (maize) 145 172 129 18
cashew nut 148 176 132 19
oats 183 217 163 23
lupine 195 232 175 25
kenaf 230 273 205 29
calendula 256 305 229 33
cotton 273 325 244 35
hemp 305 363 272 39
soybean 375 446 335 48
coffee 386 459 345 49
linseed (flax) 402 478 359 51
hazelnuts 405 482 362 51
euphorbia 440 524 393 56
pumpkin seed 449 534 401 57
coriander 450 536 402 57
mustard seed 481 572 430 61
camelina 490 583 438 62
sesame 585 696 522 74
safflower 655 779 585 83
rice 696 828 622 88
tung oil tree 790 940 705 100
sunflowers 800 952 714 102
cocoa (cacao) 863 1,026 771 110
peanuts 890 1,059 795 113
opium poppy 978 1,163 873 124
rapeseed (Canola) 1,000 1,190 893 127
olives 1,019 1,212 910 129
castor beans 1,188 1,413 1,061 151
pecan nuts 1,505 1,791 1,344 191
jojoba 1,528 1,818 1,365 194
jatropha 1,590 1,892 1,420 202
macadamia nuts 1,887 2,246 1,685 240
Brazil nuts 2,010 2,392 1,795 255
avocado 2,217 2,638 1,980 282
coconut 2,260 2,689 2,018 287
oil palm 5,000 5,950 4,465 635
Chinese tallow 5,500 6,545 4,912 699
Algae* 39,916 47,500 35,613 5,000

* Algae yields are projected based on the sustainable average yields of the NREL's aquatic species program.

- Note: Chinese tallow (Triadica Sebifera, or Sapium sebiferum) is also known as the "Popcorn Tree" or Florida Aspen.
Source: Chinese tallow data, Mississippi State University
Source: Used with permission from the The Global Petroleum Club

Typical oil extraction from 100 kg. of oil seeds

Crop Oil/100kg.
Castor Seed 50 kg
Copra 62 kg
Cotton Seed 13 kg
Groundnut Kernel 42 kg
Mustard 35 kg
Palm Kernel 36 kg
Palm Fruit 20 kg
Rapeseed 37 kg
Sesame 50 kg
Soybean 14 kg
Sunflower 32 kg

Source: Petroleum Club (with permission)
The energy content of biodiesel is about 90 percent that of petroleum diesel.


Environmental benefits

This article needs attention from an expert in Science. Please add a reason or a talk parameter to this template to explain the issue with the article. WikiProject Science may be able to help recruit an expert.

Environmental benefits in comparison to petroleum based fuels include:

  • Biodiesel reduces emissions of carbon monoxide (CO) by approximately 50% and carbon dioxide by 78% on a net lifecycle basis because the carbon in biodiesel emissions is recycled from carbon that was in the atmosphere, rather than the carbon introduced from petroleum that was sequestered in the earth's crust. However, it does produce more NOx emissions than standard diesel fuel. (Sheehan, 1998)
  • Biodiesel contains fewer aromatic hydrocarbons: benzofluoranthene: 56% reduction; Benzopyrenes: 71% reduction.
  • Biodiesel can reduce by as much as 20% the direct (tailpipe) emission of particulates, small particles of solid combustion products, on vehicles with particulate filters, compared with low-sulfur (<50 ppm) diesel. Particulate emissions as the result of production are reduced by around 50%, compared with fossil-sourced diesel. (Beer et al, 2004).
  • Biodiesel has a higher cetane rating than petrodiesel, which can improve performance and clean up emissions compared to crude petrodiesel (with cetane lower than 40).
  • Biodiesel is biodegradable and non-toxic — the U.S. Department of Energy confirms that biodiesel is less toxic than table salt and biodegrades as quickly as sugar. (See Biodiesel handling and use guidelines)
  • In the United States, biodiesel is the only alternative fuel to have successfully completed the Health Effects Testing requirements (Tier I and Tier II) of the Clean Air Act (1990).

Since biodiesel is more often used in a blend with petroleum diesel, there are fewer formal studies about the effects on pure biodiesel in unmodified engines and vehicles in day-to-day use. Fuel meeting the standards and engine parts that can withstand the greater solvent properties of biodiesel is expected to--and in reported cases does--run without any additional problems than the use of petroleum diesel.

  • The flash point of biodiesel (>150 °C) is significantly higher than that of petroleum diesel (64 °C) or gasoline (−45 °C). The gel point of biodiesel varies depending on the proportion of different types of esters contained. However, most biodiesel, including that made from soybean oil, has a somewhat higher gel and cloud point than petroleum diesel. In practice this often requires the heating of storage tanks, especially in cooler climates.
  • Pure biodiesel (B100) can be used in any petroleum diesel engine, though it is more commonly used in lower concentrations. Some areas have mandated ultra-low sulfur petrodiesel, which reduces the natural viscosity and lubricity of the fuel due to the removal of sulfur and certain other materials. Additives are required to make ULSD properly flow in engines, making biodiesel one popular alternative. Ranges as low as 2% (B2) have been shown to restore lubricity. Many municipalities have started using 5% biodiesel (B5) in snow-removal equipment and other systems.

Environmental concerns

The locations where oil-producing plants are grown is of increasing concern to environmentalists, one of the prime worries being that countries will clear cut large areas of tropical forest in order to grow such lucrative crops, in particular, oil palm. This has already occurred in the Philippines and Indonesia; both countries plan to increase their biodiesel production levels significantly, which will lead to the deforestation of tens of millions of acres if these plans materialize. Loss of habitat on such a scale could endanger numerous species of plants and animals. A particular concern which has received considerable attention is the threat to the already-shrinking populations of orangutans on the Indonesian islands of Borneo and Sumatra, which face possible extinction.

The oils for biodiesel, and biodiesel itself, produced in Asia, South America and Africa are far cheaper than those produced in Europe and North America. Most biodiesel is therefor not a local, carbon neutral product. Biodiesel requires a large investment of energy before it arrives at petrol pumps. Coupled with the deforestation, and monoculture farming techniques used to grow crops, biodiesel represents a serious threat to the environment. Forests contain large quantities of carbon which are released when they are burnt to make space for farming. Forests also trap carbon in humus and soil, something that farming biodiesel crops does not do. Clearing forests is a cause of global warming and desertification. These problems will be exacerbated as biodiesel becomes more popular unless stringent laws are introduced and enforced to control biodiesel production. Biodiesel produced from clear cut forest land offers no environmental advantage over petroleum diesel.

The Union of Concerned Scientists writes:

When it comes to buying a new car, gasoline-powered models are better than diesels on toxic soot and smog-forming emissions. The downside to current diesels is that they produce 10 to 20 times more toxic particulates than their gasoline counterparts, more than can be made up for with the use of biodiesel. Diesels fare even worse when it comes to smog-forming nitrogen oxide emissions, with greater than 20 times the emissions of a comparable gasoline vehicle.

These estimates, however, are based on 2005 model year diesels in the U.S., prior to the introduction of ultra-low sulfur diesel (ULSD) and tightened emissions standards that apply in several U.S. states from January 1, 2007. The introduction of ULSD allows for the use of newer technologies to substantially reduce particulate and other toxic emissions; the European Union has had lower sulfur requirements than the U.S. for several years and as a result NOx emissions are only 2-3 times higher than for gasoline engines (Dieselnet, 2006).

Biodiesel is estimated to produce between 10% and 25% more nitrogen oxide NOx tailpipe-emissions than petrodiesel. As biodiesel has a low sulfur content, NOx emissions can be reduced through the use of catalytic converters to less than the NOx emissions from conventional diesel engines. Nonetheless, the NOx tailpipe emissions of biodiesel after the use of a catalytic converter will remain greater than the equivalent emissions from petrodiesel. As biodiesel contains no nitrogen, the increase in NOx emissions may be due to the higher cetane rating of biodiesel and higher oxygen content, which allows it to convert nitrogen from the atmosphere into NOx more rapidly. Debate continues over NOx emissions. In February 2006 a Navy biodiesel expert claimed NOx emissions in practice were actually lower than baseline. Further research is needed.

Recent advances in the use of cerium-oxide, however, hold the potential to nearly eliminate NOx emissions from both petrodiesel and biodiesel, and diesel fuel additives based on cerium oxide can improve fuel consumption by 11% in unmodified diesel engines.

A look at some of the problems with the pursuit of biodiesel can be found at Biofuelwatch.

  1. chemweek's Business Daily, Tuesday May 8, 2007
  2. http://www.dow.com/propyleneglycol/news/20070315b.htm, accessed June 25, 2007
  3. http://epoxy.dow.com/epoxy/news/2007/20070326b.htm, accessed June 25, 2007
  4. Helen Buckland, Ed Matthew (ed.) (19 September 2005). "The Oil for Ape Scandal: How palm oil is threatening the orang-utan" (PDF (458 Kb)). Summary. Friends of the Earth Trust. Retrieved 2007-01-02. {{cite journal}}: |author= has generic name (help); Cite journal requires |journal= (help)
  5. "Should I buy a new gasoline hybrid vehicle or a new diesel vehicle and run it on biodiesel?". Clean Vehicles, Biodiesel FAQ. Union of Concerned Scientists. 28 September 2005. Retrieved 2007-01-02.
  6. Catherine Foster (27 April 2007). "New catalyst helps eliminate NOx from diesel exhaust" (HTML). Argonne National Laboratory. Retrieved 2007-05-05.