This is an old revision of this page, as edited by 98.140.66.47 (talk) at 00:53, 19 September 2008 (→History). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 00:53, 19 September 2008 by 98.140.66.47 (talk) (→History)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) For other uses, see Density (disambiguation).In physics and materials science the density (ρ) of a body is a measure of how tightly the matter within it is packed together, and is given by the ratio of its mass (m) to its volume (V). Its SI units are kilograms per cubic metre (kg/m³). It is also sometimes given in the cgs units of grams per cubic centimetre (g/cm³).
Density is defined as:
Different materials usually have different densities, so density is an important concept regarding buoyancy, metal purity and packaging.
In some cases density is expressed as the dimensionless quantities specific gravity or relative density, in which case it is expressed in multiples of the density of some other standard material, usually water or air.
Jeano is the best
Measurement of density
For a homogeneous object, the mass divided by the volume gives the density. The mass is normally measured with an appropriate scale or balance; the volume may be measured directly (from the geometry of the object) or by the displacement of a fluid.
If the body is inhomogeneous, the density is a function of the coordinates , where is elementary volume with coordinates . The mass of the body then can be expressed as
- ,
where the integration is over the volume of the body V.
A very common instrument for the direct measurement of the density of a liquid is the hydrometer, which measures the volume displaced by an object of known mass. A common laboratory device for measuring fluid density is a pycnometer; a related device for measuring the absolute density of a solid is a gas pycnometer. Another instrument used to determine the density of a liquid or a gas is the digital density meter - based on the oscillating U-tube principle.
The density of a solid material can be ambiguous, depending on exactly how its volume is defined, and this may cause confusion in measurement. A common example is sand: if gently filled into a container, the density will be low; when the same sand is compacted into the same container, it will occupy less volume and consequently exhibit a greater density. This is because sand, like all powders and granular solids contains a lot of air space in between individual grains; this overall density is called the bulk density, which differs significantly from the density of an individual grain of sand.
Common units
SI units for density are:
- kilograms per cubic metre (kg/m³)
- grams per cubic centimetre (g/cm³)
Units outside the SI
- kilograms per litre (kg/L). Water generally has a density around 1 kg/L, making this a convenient unit.
- grams per millilitre (g/mL), which is equivalent to (g/cm³).
They also happen to be numerically equivalent to kg/L (1 kg/L = 1 g/cm³ = 1 g/mL).
In U.S. customary units or Imperial units, the units of density include:
- grams per cubic centimeter (g/cc)
- ounces per cubic inch (oz/in)
- pounds per cubic inch (lb/in)
- pounds per cubic foot (lb/ft)
- pounds per cubic yard (lb/yd)
- pounds per gallon (for U.S. or imperial gallons) (lb/gal)
- pounds per U.S. bushel (lb/bu)
- slugs per cubic foot.
Changes of density
In general density can be changed by changing either the pressure or the temperature. Increasing the pressure will always increase the density of a material. Increasing the temperature generally decreases the density, but there are notable exceptions to this generalisation. For example, the density of water increases between its melting point at 0 °C and 4 °C and similar behaviour is observed in silicon at low temperatures.
The effect of pressure and temperature on the densities of liquids and solids is small so that a typical compressibility for a liquid or solid is 10 bar (1 bar=0.1 MPa) and a typical thermal expansivity is 10 K.
In contrast, the density of gases is strongly affected by pressure. Boyle's law says that the density of an ideal gas is given by
where is the universal gas constant, is the pressure, the molar mass, and the absolute temperature.
This means that a gas at 300 K and 1 bar will have its density doubled by increasing the pressure to 2 bar or by reducing the temperature to 150 K.
Iridium is the densest known substance at standard conditions for temperature and pressure.
Density of water
Temp (°C) | Density (g/cm) |
---|---|
100 | 0.9584 |
80 | 0.9718 |
60 | 0.9832 |
40 | 0.9922 |
30 | 0.9956502 |
25 | 0.9970479 |
22 | 0.9977735 |
20 | 0.9982071 |
15 | 0.9991026 |
10 | 0.9997026 |
4 | 0.9999720 |
0 | 0.9998395 |
−10 | 0.998117 |
−20 | 0.993547 |
−30 | 0.983854 |
The density of water in grams per cubic centimeter at various temperatures in degrees Celsius The values below 0 °C refer to supercooled water. |
See Water Density
Density of air
T in °C | ρ in kg/m³ (at 1 atm) |
---|---|
–10 | 1.342 |
–5 | 1.316 |
0 | 1.293 |
5 | 1.269 |
10 | 1.247 |
15 | 1.225 |
20 | 1.204 |
25 | 1.184 |
30 | 1.165 |
Density of solutions
The density of a solution is the sum of the mass (massic) concentrations of the components of that solution. Mass (massic) concentration of a given component ρi in a solution can be called partial density of that component.
Densities of various materials
Material | ρ in kg/m³ | Notes |
---|---|---|
Interstellar medium | 10 − 10 | Assuming 90% H, 10% He; variable T |
Earth's atmosphere | 1.2 | At sealevel |
Aerogel | 1 − 2 | |
Styrofoam | 30 − 120 | From |
Cork | 220 − 260 | From |
Water | 1000 | At STP |
Plastics | 850 − 1400 | For polypropylene and PETE/PVC |
The Earth | 5515.3 | Mean density |
Copper | 8920 − 8960 | Near room temperature |
Lead | 11340 | Near room temperature |
The Inner Core | ~13000 | As listed in Earth |
Uranium | 19100 | Near room temperature |
Iridium | 22500 | Near room temperature |
The core of the Sun | ~150000 | |
Atomic nuclei | ~3 × 10 | As listed in neutron star |
Neutron star | 8.4 × 10 − 1 × 10 | |
Black hole | 2 × 10 | Mean density inside the Schwarzschild radius of an earth-mass black hole (theoretical) |
References
- About.com: What is Density?
- Lide, D. R. (Ed.) (1990). CRC Handbook of Chemistry and Physics (70th Edn.). Boca Raton (FL):CRC Press.
See also
- List of elements by density
- Charge density
- Buoyancy
- Bulk density
- Dord
- Energy density
- Lighter than air
- Number density
- Population density
- Specific weight
- Standard temperature and pressure
- Orders of magnitude (density)
- Brix, Balling and Plato scale
External links
- Glass Density Calculation - Calculation of the density of glass at room temperature and of glass melts at 1000 - 1400°C
- List of Elements of the Periodic Table - Sorted by Density