Misplaced Pages

Thermoregulation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 80.103.178.35 (talk) at 15:26, 15 June 2006 (Human temperature variation effects). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 15:26, 15 June 2006 by 80.103.178.35 (talk) (Human temperature variation effects)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when temperature surrounding is very different. This process is known as homeostasis: a dynamic state of stability between an animal's internal environment and its external environment (the study of such processes in zoology has been called ecophysiology or physiological ecology). If the body is unable to maintain a normal temperature and it increases significantly above normal, a condition known as hyperthermia occurs. The opposite condition, when body temperature decreases below normal levels, is known as hypothermia.

Whereas an organism that thermoregulates is one that keeps its temperature constant and adapts to the temperature of the environment, a thermoconformer changes its body temperature according to the temperature outside of its body. It was not until the introduction of thermometers that any exact data on the temperature of animals could be obtained. It was then found that local differences were present, since heat production and heat loss vary considerably in different parts of the body, although the circulation of the blood tends to bring about a mean temperature of the internal parts. Hence it is important to determine the temperature of those parts which most nearly approaches to that of the internal organs. Also for such results to be comparable they must be made in the same situation. The rectum gives most accurately the temperature of internal parts, or in some cases of gender or species, the vagina, uterus or bladder.

Occasionally that of the urine as it leaves the urethra may be of use. More usually the temperature is taken in the mouth, axilla or groin.

Temperature regulation

  1. conduction - heat escapes from your body e.g.when you sit on a cold rock.
  2. convection - cooler air currents remove heat from the surface of your skin.
  3. evaporation - evaporative cooling occurs when water (often from perspiration) leaves the skin surface as a vapor, lowering the body temperature by taking the heat of evaporation from the body. see also TEWL
  4. radiation - e.g. acquisition of heat from solar radiation (e.g. snakes "sunning" on a cold day).

Types of thermoregulation

There are two types of thermoregulation that are used by animals:

  1. physiological regulation: This is when an organism changes its physiology to regulate body temperature. For example, many mammals tend to sweat in order to lower temperature. Another example is when humans get cold, muscles may shiver in order to produce heat.
  2. behavioral regulation: This is when an organism changes its behavior to change its body temperature. For example, when animals warm up out in the sun, they may wish to find shade to cool down.

Physiological temperature regulation in vertebrates

By numerous observations upon men and animals, John Hunter showed that the essential difference between the so-called warm-blooded and cold-blooded animals lies in the constancy of the temperature of the former, and the variability of the temperature of the latter. Those animals high in the scale of evolution, as birds and mammals, have a high temperature almost constant and independent of that of the surrounding air, whereas among the lower animals there is much variation of body temperature, dependent entirely on their surroundings.

There are, however, certain mammals which are exceptions, being warm-blooded during the summer, but cold-blooded during the winter when they hibernate; such are the hedgehog, bat and dormouse. John Hunter suggested that two groups should be known as "animals of permanent heat at all atmospheres" and "animals of a heat variable with every atmosphere," but later Bergmann suggested that they should be known as "homeothermic" and "poikilothermic" animals. However, it must be remembered there is no hard and fast line between the two groups.

Also, from work done by J. O. Wakelin Barratt, it has been shown that under certain pathological conditions a warm-blooded (homeothermic) animal may become for a time cold-blooded (poikilothermic). He has shown conclusively that this condition exists in rabbits suffering from rabies during the last period of their life, the rectal temperature being then within a few degrees of the room temperature and varying with it. He explains this condition by the assumption that the nervous mechanism of heat regulation has become paralysed. The respiration and heart-rate being also retarded during this period, the resemblance to the condition of hibernation is considerable. Again, Sutherland Simpson has shown that during deep anaesthesia a warm-blooded animal tends to take the same temperature as that of its environment. He demonstrated that when a monkey is kept deeply anaesthetized with ether and is placed in a cold chamber, its temperature gradually falls, and that when it has reached a sufficiently low point (about 25 °C in the monkey), the employment of an anaesthetic is no longer necessary, the animal then being insensible to pain and incapable of being roused by any form of stimulus; it is, in fact, narcotized by cold, and is in a state of what may be called "artificial hibernation." Once again this is explained by the fact that the heat-regulating mechanism has been interfered with. Similar results have been obtained from experiments on cats.

These facts - with many others - tend to show that the power of maintaining a constant temperature has been a gradual development, as Darwin's theory of evolution suggests, and that anything that interferes with the due working of the higher nerve-centres puts the animal back again, for the time being, on to a lower plane of evolution.

Ectotherms

Main article: Ectotherm

Even though fish and other ectotherms have developed the ability to remain functional even when the water temperature is below freezing and some even use natural antifreeze to resist ice crystal formation in their tissues; amphibians (also ectotherms) must cope with the loss of heat through their moist skins by evaporative cooling; reptiles, like amphibians must warm their bodies by behavioral adaptations; the stratum corneum they possess limits heat loss by evaporative cooling.

Endotherms

Main article: Endotherm

To regulate body temperature, an organism may need to prevent heat gains in arid environments. Evaporation of water, either across respiratory surfaces or across the skin in those animals possessing sweat glands (mammals)helps in cooling body temperature to within the organism's tolerance range. Animals with a body covered by fur have limited ability to sweat, and rely heavily on panting to increase evaporation of water across the moist surface of the tongue and mouth.Birds also avoid overheating by panting since, as their thin skin also has no sweat glands. Down feathers trap warm air acting as excellent insulators just as hair in mammals also acts as a good insulator; mammalian skin is much thicker than that of birds and often has a continuous layer of insulating fat beneath the dermis - in marine mammals like whales this is referred to as blubber. Dense coats found in desert endotherms also aids in preventing heat gain. Another cold weather strategy is to temporarily decrease metabolic rate and body temperature regulated decrease in body temperature decreases the temperature difference between the animal and the air and therefore minimizes heat loss. Furthermore, having a lower metabolic rate is less energetically expensive. Many animals survive cold frosty nights through torpor, a short-term temporary drop in body temperature. Organisms when presented with the problem of regulating body temperature not only have behavioural, physiological and structural adaptations, but also a feedback system to trigger these adaptations to regulate temperature accordingly. The main features of this system are; Stimulus, Receptor, Modulator, Effector and then the feedback of the now ajusted temperature to the Stimulus. This cyclical process aids in homeostasis.

Heat production in birds and mammals

In cold environments, birds and mammals can compensate for heat loss by:

  1. utilizing small smooth muscles (arrector pili in mammals) which are attached to feather or hair shafts; this shivering thermogenesis distorts the surface of the skin as the feather/hair shaft is made more erect (called goose bumps or pimples).
  2. animals in cold climates tend to be larger (easier to maintain core body temperature) than similar species in warmer climates.
  3. be capable of storing energy as fat for metabolism
  4. have reduced extremities
  5. some have countercurrent blood flow in extremities (e.g. timber wolves) to avoid freezing of tissues.

In warm environments, birds and mammals avoid overheating by:

  1. behavioral adaptations like living in burrows during the day and being nocturnal
  2. evaporative cooling by perspiration and panting
  3. storing fat reserves in one place (e.g. camel's hump) to avoid its insulating effect
  4. elongate, often vascularized extremities to conduct body heat to the air.

Behavioral temperature regulation

In addition to human beings, a number of animals also maintain their body temperature with physiological and behavioral adjustments. For example, a desert lizard is an ectotherm and is therefore unable to control its temperature through metabolic regulation. However, by altering its location continuously, it is able to maintain a crude form of temperature control. In the morning, only its head will emerge from its burrow. Later, the entire body is exposed. The lizard basks in the sun, absorbing solar heat. When the temperature reaches higher levels, the lizard will hide under rocks or return to its burrow. When the sun goes down or the temperature falls, it emerges again.

Some animals living in cold environments maintain their body temperature by preventing heat loss. Their fur grows more densely to increase the amount of insulation. Some arctic animals are able to allow their less insulated extremities to cool to temperatures much lower than their core temperature -- nearly to 0 °C. This minimizes heat loss through less insulated body parts, like the legs, feet (or hooves), and nose.

Hibernation, estivation, and daily torpor

Rather than cope with limited food resources and low temperatures, some mammals "punt" in a sense, by hibernating in underground burrows; in order to remain in "stasis" for long periods, these animals must build up brown fat reserves and be capable of slowing all body functions; True hibernators (e.g. groundhogs) keep their body temperature down throughout their hibernation while the core temperature of false hibernators (e.g. bears) varies with them sometimes emerging from their dens for brief periods; bats are true hibernators which rely upon a rapid, non-shivering thermogenesis of their brown fat deposit to bring them out of hibernation.

Estivation occurs in summer (like siestas) and allows some mammals to survive periods of high temperature and little water (e.g. turtles burrow in pond mud).

Daily torpor occurs in small endotherms like bats and humming birds which temporarily reduce their high metabolic rates to conserve energy.

Variations in the temperature of human beings and some other animals

Chart showing diurnal variation in body temperature, ranging from about 37.5 °C from 10 a.m. to 6 p.m., and falling to about 36.3 °C from 2 a.m. to 6 a.m.

Variations from thermometer placement

As stated above, the temperature of warm-blooded animals is maintained with but slight variation. In health under normal conditions the temperature of humans varies between 36.5 °C and 37.5 °C, or if the thermometer be placed in the axilla, between 36.25 °C and 37.5 °C. In the mouth the reading would be from 0.25 °C to 1.5 °C higher than this; and in the rectum some 0.9 °C higher still. The temperature of infants and young children has a much greater range than this, and is susceptible of wide divergencies from comparatively slight causes.

Variations associated with development

Of the lower warm-blooded animals, there are some that appear to be cold-blooded at birth. Kittens, rabbits and puppies, if removed from their surroundings shortly after birth, lose their body heat until their temperature has fallen to within a few degrees of that of the surrounding air. But such animals are at birth blind, helpless and in some cases naked. Animals who are born when in a condition of greater development can maintain their temperature fairly constant. In strong, healthy infants a day or two old the temperature rises slightly, but in that of weakly, ill-developed children it either remains stationary or falls. The cause of the variable temperature in infants and young immature animals is the imperfect development of the nervous regulating mechanism.

The average temperature falls slightly from infancy to puberty and again from puberty to middle age, but after that stage is passed the temperature begins to rise again, and by about the eightieth year is as high as in infancy.

Variations due to circadian rhythms

In humans, a diurnal variation has been observed dependent on the periods of rest and activity, the maximum ranging from 10 a.m. to 6 p.m., the minimum from 11 p.m. to 3 a.m. Sutherland Simpson and J.J. Galbraith did much work on this subject. In their first experiments they showed that in a monkey there is a well-marked and regular diurnal variation of the body temperature, and that by reversing the daily routine this diurnal variation is also reversed (Simpson & Galbraith, 1905). The diurnal temperature curve follows the periods of rest and activity, and is not dependent on the incidence of day and night; in monkeys which are active during the night and resting during the day, the body temperature is highest at night and lowest through the day. They then made observations on the temperature of animals and birds of nocturnal habit, where the periods of rest and activity are naturally the reverse of the ordinary through habit and not from outside interference. They found that in nocturnal birds the temperature is highest during the natural period of activity (night) and lowest during the period of rest (day), but that the mean temperature is lower and the range less than in diurnal birds of the same size. That the temperature curve of diurnal birds is essentially similar to that of man and other homoiothermal animals, except that the maximum occurs earlier in the afternoon and the minimum earlier in the morning. Also that the curves obtained from rabbit, guinea pig and dog were quite similar to those from man.

These observations indicate that body temperature is partially regulated by circadian rhythms.

Variations due to other factors

In Simpson's & Galbraith's work, the mean temperature of the female was higher than that of the male in all the species examined whose sex had been determined.

Meals sometimes cause a slight elevation, sometimes a slight depression—alcohol seems always to produce a fall. Exercise and variations of external temperature within ordinary limits cause very slight change, as there are many compensating influences at work, which are discussed later. Even from very active exercise the temperature does not rise more than one degree, and if carried to exhaustion a fall is observed. In travelling from very cold to very hot regions a variation of less than one degree occurs, and the temperature of those living in the tropics is practically identical with those dwelling in the Arctic regions.

Limits compatible with life

There are limits both of heat and cold that a warm-blooded animal can bear, and other far wider limits that a cold-blooded animal may endure and yet live. The effect of too extreme a cold is to lessen metabolism, and hence to lessen the production of heat. Both catabolic and anabolic changes share in the depression, and though less energy is used up, still less energy is generated. This diminished metabolism tells first on the central nervous system, especially the brain and those parts concerned in consciousness. Both heart rate and respiration rate become diminished, drowsiness supervenes, becoming steadily deeper until it passes into the sleep of death. Occasionally, however, convulsions may set in towards the end, and a death somewhat similar to that of asphyxia takes place.

In some experiments on cats performed by Sutherland Simpson and Percy T. Herring, they found them unable to survive when the rectal temperature was reduced below 16°C. At this low temperature respiration became increasingly feeble, the heart-impulse usually continued after respiration had ceased, the beats becoming very irregular, apparently ceasing, then beginning again. Death appeared to be mainly due to asphyxia, and the only certain sign that it had taken place was the loss of knee jerks.

On the other hand, too high a temperature hurries on the metabolism of the various tissues at such a rate that their capital is soon exhausted. Blood that is too warm produces dyspnea and soon exhausts the metabolic capital of the respiratory centre. Heart rate is increased, the beats then become arrhythmic and finally cease. The central nervous system is also profoundly affected, consciousness may be lost, and the patient falls into a comatose condition, or delirium and convulsions may set in. All these changes can be watched in any patient suffering from an acute fever. The lower limit of temperature that man can endure depends on many things, but no one can survive a temperature of 45°C (113°F) or above for very long. Mammalian muscle becomes rigid with heat rigor at about 50°C, and obviously should this temperature be reached the sudden rigidity of the whole body would render life impossible.

H.M. Vernon has done work on the death temperature and paralysis temperature (temperature of heat rigor) of various animals. He found that animals of the same class of the animal kingdom showed very similar temperature values, those from the Amphibia examined being 38.5°C, Fishes 39°C, Reptilia 45°C, and various Molluscs 46°C. Also in the case of Pelagic animals he showed a relation between death temperature and the quantity of solid constituents of the body, Cestus having lowest death temperature and least amount of solids in its body. But in the higher animals his experiments tend to show that there is greater variation in both the chemical and physical characters of the protoplasm, and hence greater variation in the extreme temperature compatible with life.

Human temperature variation effects

Hot

Fevers are not to be confused with heat stroke. In fever the person can feel cold at high body temperatures since the body is fooled into thinking it is cold by the infectant microbe affecting the point that the body thermostat is set at. It is literally set higher than usual.

  • 37°C (98.6°F) - Normal body temperature (which varies between about 36-37.5°C (96.8-99.5°F)
  • 38°C (100.4°F) - Sweating, feeling very uncomfortable, slightly hungry.
  • 39°C (102.2°F) (Pyrexia) - Severe sweating, flushed and very red. Fast heart rate and breathlessness. There may be exhaustion accompanying this. Children and epileptics may be very likely to get convulsions at this point.
  • 40°C (104°F) - Fainting, dehydration, weakness, vomiting, headache and dizziness may occour as well as profuse sweating.
  • 41°C (105.8°F) - (Medical emergency) - Fainting, vomiting, severe headache, dizziness, confusion, hallucinations, delirium and drowsiness can occur. There may also be palpitations and breathlessness.
  • 42°C (107.6°F) - Subject may turn pale or remain flushed and red. They may become comatose, be in severe delirium, vomiting, and convulsions can occur. Blood pressure may be high or low and heart rate will be very fast.
  • 43°C (109.4°F) - Normally death, or there may be serious brain damage, continuous convulsions and shock. Cardio-respiratory collapse will occur.
  • 44°C (111.2°F) or more - Almost certainly death will occur. However patients have been know to survive up to 46°C (114.8°F).

Cold

  • 37°C (98.6°F) - Normal body temperature (which varies between about 36-37.5°C (96.8-99.5°F)
  • 36°C (96.8°F) - Mild to moderate shivering (this drops this low during sleep). May be a normal body temperature.
  • 35°C (95.0°F) - (Hypothermia) is less than 35°C (95.0°F) - Intense shivering, numbness and blueish/greyness of the skin. There is the possibility of heart irritability.
  • 34°C (93.2°F) - Severe shivering, loss of movement of fingers, blueness and confusion. Some behavioural changes may take place.
  • 33°C (91.4°F) - Moderate to severe confusion, sleepiness, depressed reflexes, progressive loss of shivering, slow heart beat, shallow breathing. Shivering may stop. Subject may be unresponsive to certain stimuli.
  • 32°C (89.6°F) - (Medical emergency) Hallucinations, delirium, complete confusion, extreme sleepiness that is progressively becoming comatose. Shivering is absent (subject may even think they are hot). Reflex may be absent of very slight.
  • 31°C (87.8°F) - Comatose, very rarely conscious. No or slight reflexes. Very shallow breathing and slow heart rate. Possibility of serious heart rhythm problems.
  • 28°C (82.4°F) - Severe heart rhythm disturbances are likely and breathing may stop anytime. Patient may appear to be dead.
  • 24-26°C (75.2-78.8°F) or less - Death usually occurs due to irregular heart beat or respiratory arrest. However, some patients have to been known to survive much lower body temperature and may be mistaken for being dead right down to 14°C (57.2°F)

References

  • Textbook of Physiology, Kirkes, (Philadelphia, 1907)
  • Simpson, S. & Galbraith, J.J. (1905) Observations on the normal temperatures of the monkey and its diurnal variation, and on the effects of changes in the daily routine on this variation. Transactions of the Royal Society of Edinburgh 45: 65-104.

See also

Public Domain This article incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911). Encyclopædia Britannica (11th ed.). Cambridge University Press. {{cite encyclopedia}}: Missing or empty |title= (help)

Category: