This is an old revision of this page, as edited by 69.227.161.36 (talk) at 03:49, 30 October 2014 (→References). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 03:49, 30 October 2014 by 69.227.161.36 (talk) (→References)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)In general relativity, Regge calculus is a formalism for producing simplicial approximations of spacetimes that are solutions to the Einstein field equation. The calculus was introduced by the Italian theoretician Tullio Regge in the early 1960s.
The starting point for Regge's work is the fact that every Lorentzian manifold admits a triangulation into simplices. Furthermore, the spacetime curvature can be expressed in terms of deficit angles associated with 2-faces where arrangements of 4-simplices meet. These 2-faces play the same role as the vertices where arrangements of triangles meet in a triangulation of a 2-manifold, which is easier to visualize. Here a vertex with a positive angular deficit represents a concentration of positive Gaussian curvature, whereas a vertex with a negative angular deficit represents a concentration of negative Gaussian curvature.
The deficit angles can be computed directly from the various edge lengths in the triangulation, which is equivalent to saying that the Riemann curvature tensor can be computed from the metric tensor of a Lorentzian manifold. Regge showed that the vacuum field equations can be reformulated as a restriction on these deficit angles. He then showed how this can be applied to evolve an initial spacelike hyperslice according to the vacuum field equation.
The result is that, starting with a triangulation of some spacelike hyperslice (which must itself satisfy a certain constraint equation), one can eventually obtain a simplicial approximation to a vacuum solution. This can be applied to difficult problems in numerical relativity such as simulating the collision of two black holes.
The elegant idea behind Regge calculus has motivated the construction of further generalizations of this idea. In particular, Regge calculus has been adapted to study quantum gravity.
See also
- Euclidean quantum gravity
- Piecewise linear manifold
- Euclidean simplex
- Path integral formulation
- Lattice gauge theory
- Wheeler-DeWitt equation
- Mathematics of general relativity
- Causal dynamical triangulation
- Ricci calculus
References
- Tullio E. Regge (1961). "General relativity without coordinates". Nuovo Cim. 19 (3): 558–571. doi:10.1007/BF02733251. Available (subscribers only) at Il Nuovo Cimento
- John Archibald Wheeler (1965). "Geometrodynamics and the Issue of the Final State, in "Relativity Groups and Topology"". Les Houches Lecture Notes 1963, Gordon and Breach.
{{cite journal}}
: Cite journal requires|journal=
(help) - Misner, Charles W. Thorne, Kip S. & Wheeler, John Archibald (1973). Gravitation. San Francisco: W. H. Freeman. ISBN 0-7167-0344-0.
{{cite book}}
: CS1 maint: multiple names: authors list (link) See chapter 42. - Herbert W. Hamber (2009). Quantum Gravitation - The Feynman Path Integral Approach. Springer Publishing. doi:10.1007/978-3-540-85293-3. ISBN 978-3-540-85292-6. Chapters 4 and 6.
- James B. Hartle (1985). "Simplicial MiniSuperSpace I. General Discussion". Jour. Math. Physics. 26: 804–812. doi:10.1063/1.526571.
- Ruth M. Williams and Philip A. Tuckey (1992). "Regge calculus: a brief review and bibliography". Class. Quant. Grav. 9 (5): 1409–1422. Bibcode:1992CQGra...9.1409W. doi:10.1088/0264-9381/9/5/021. Available (subscribers only) at "Classical and Quantum Gravity".
- Tullio E. Regge and Ruth M. Williams (2000). "Discrete Structures in Gravity". Jour. Math. Phys. 41: 3964–3984. doi:10.1063/1.533333. Available at .
- Adrian P. Gentle (2002). "Regge calculus: a unique tool for numerical relativity". Gen. Rel. Grav. 34 (10): 1701–1718. doi:10.1023/A:1020128425143. eprint
- Herbert W. Hamber (1984). "Simplicial Quantum Gravity, in the Houches Summer School, Session XLIII)". North Holland Elsevier: 375–439.
{{cite journal}}
: Cite journal requires|journal=
(help) - Renate Loll (1998). "Discrete approaches to quantum gravity in four dimensions". Living Rev. Relativity. 1: 13. arXiv:gr-qc/9805049. Bibcode:1998LRR.....1...13L. doi:10.12942/lrr-1998-13.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) Available at "Living Reviews of Relativity". See section 3. - J. W. Barrett (1987). "The geometry of classical Regge calculus". Class. Quant. Grav. 4 (6): 1565–1576. Bibcode:1987CQGra...4.1565B. doi:10.1088/0264-9381/4/6/015. Available (subscribers only) at "Classical and Quantum Gravity".
External links
This applied mathematics–related article is a stub. You can help Misplaced Pages by expanding it. |
This physics-related article is a stub. You can help Misplaced Pages by expanding it. |