Misplaced Pages

Feathered dinosaur

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Manul (talk | contribs) at 16:53, 19 December 2014 (Reverted edits by 188.126.90.35 (talk) to last version by Manul). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 16:53, 19 December 2014 by Manul (talk | contribs) (Reverted edits by 188.126.90.35 (talk) to last version by Manul)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Fossil of Microraptor gui includes impressions of feathered wings (see arrows)

Although growing evidence of the relationship of non-avian dinosaurs to birds raised the possibility of feathered dinosaurs over the twentieth century, it was not until the mid-1990s that clearly non-avian dinosaur fossils were discovered with preserved feathers. Since then, feathers or feather-like integument have been discovered on dozens of genera of dinosaurs via both direct and indirect fossil evidence.

The fossil feathers of one specimen of the alvarezsaurid Shuvuuia deserti have tested positive for beta-keratin, the main protein in bird feathers.

Although the vast majority of feather discoveries have been for coeleurosaurian theropods, the discoveries of integument on at least three ornithschians raise the likelihood that proto-feathers were present in basal dinosaurs, and perhaps even a more ancestral animal, in light of the pycnofibers of pterosaurs.

History of research

Main article: Origin of birds

Early

The Berlin Archaeopteryx

Shortly after the 1859 publication of Charles Darwin's On the Origin of Species, British biologist Thomas Henry Huxley proposed that birds were descendants of dinosaurs. He compared the skeletal structure of Compsognathus, a small theropod dinosaur, and the 'first bird' Archaeopteryx lithographica (both of which were found in the Upper Jurassic Bavarian limestone of Solnhofen). He showed that, apart from its hands and feathers, Archaeopteryx was quite similar to Compsognathus. Thus Archaeopteryx represents a transitional fossil. In 1868 he published On the Animals which are most nearly intermediate between Birds and Reptiles, making the case. The leading dinosaur expert of the time, Richard Owen, disagreed, claiming Archaeopteryx as the first bird outside dinosaur lineage. For the next century, claims that birds were dinosaur descendants faded, with more popular bird-ancestry hypotheses including 'crocodylomorph' and 'thecodont' ancestors, rather than dinosaurs or other archosaurs.

In 1964, John Ostrom described Deinonychus antirrhopus, a theropod whose skeletal resemblance to birds seemed unmistakable. Ostrom became a leading proponent of the theory that birds are direct descendants of dinosaurs. Further comparisons of bird and dinosaur skeletons, as well as cladistic analysis strengthened the case for the link, particularly for a branch of theropods called maniraptors. Skeletal similarities include the neck, the pubis, the wrists (semi-lunate carpal), the 'arms' and pectoral girdle, the shoulder blade, the clavicle and the breast bone. In all, over a hundred distinct anatomical features are shared by birds and theropod dinosaurs.

Other researchers drew on these shared features and other aspects of dinosaur biology and began to suggest that at least some theropod dinosaurs were feathered. The first restoration of a feathered dinosaur was Sarah Landry's depiction of a feathered "Syntarsus" (now renamed Megapnosaurus or considered a synonym of Coelophysis), in Robert T. Bakker's 1975 publication Dinosaur Renaissance. Gregory S. Paul was probably the first paleoartist to depict maniraptoran dinosaurs with feathers and protofeathers, starting in the late 1970s.

By the 1990s, most paleontologists considered birds to be surviving dinosaurs and referred to 'non-avialan dinosaurs' (all extinct), to distinguish them from birds (Avialae). Before the discovery of feathered dinosaurs, the evidence was limited to Huxley and Ostrom's comparative anatomy. Some mainstream ornithologists, including Smithsonian Institution curator Storrs L. Olson, disputed the links, specifically citing the lack of fossil evidence for feathered dinosaurs.

Fossil discoveries

Sinosauropteryx fossil, first fossil of a definitively non-avialan dinosaur with feathers

After a century of hypotheses without conclusive evidence, well-preserved fossils of feathered dinosaurs were discovered during the 1990s, and more continue to be found. The fossils were preserved in a Lagerstätte — a sedimentary deposit exhibiting remarkable richness and completeness in its fossils — in Liaoning, China. The area had repeatedly been smothered in volcanic ash produced by eruptions in Inner Mongolia 124 million years ago, during the Early Cretaceous epoch. The fine-grained ash preserved the living organisms that it buried in fine detail. The area was teeming with life, with millions of leaves, angiosperms (the oldest known), insects, fish, frogs, salamanders, mammals, turtles, and lizards discovered to date.

The most important discoveries at Liaoning have been a host of feathered dinosaur fossils, with a steady stream of new finds filling in the picture of the dinosaur–bird connection and adding more to theories of the evolutionary development of feathers and flight. Turner et al. (2007) reported quill knobs from an ulna of Velociraptor mongoliensis, and these are strongly correlated with large and well-developed secondary feathers.

A nesting Citipati osmolskae specimen, at the AMNH.

Behavioural evidence, in the form of an oviraptorosaur on its nest, showed another link with birds. Its forearms were folded, like those of a bird. Although no feathers were preserved, it is likely that these would have been present to insulate eggs and juveniles.

Not all of the Chinese fossil discoveries proved valid however. In 1999, a supposed fossil of an apparently feathered dinosaur named "Archaeoraptor liaoningensis", found in Liaoning Province, northeastern China, turned out to be a forgery. Comparing the photograph of the specimen with another find, Chinese paleontologist Xu Xing came to the conclusion that it was composed of two portions of different fossil animals. His claim made National Geographic review their research and they too came to the same conclusion. The bottom portion of the "Archaeoraptor" composite came from a legitimate feathered dromaeosaurid now known as Microraptor, and the upper portion from a previously-known primitive bird called Yanornis.

In 2011, samples of amber were discovered to contain preserved feathers from 75 to 80 million years ago during the Cretaceous era, with evidence that they were from both dinosaurs and birds. Initial analysis suggests that some of the feathers were used for insulation, and not flight. More complex feathers were revealed to have variations in coloration similar to modern birds, while simpler protofeathers were predominantly dark. Only 11 specimens are currently known. The specimens are too rare to be broken open to study their melanosomes, but there are plans for using non-destructive high-resolution X-ray imaging.

Current knowledge

List of dinosaur species preserved with evidence of feathers

Fossil of Sinornithosaurus millenii, the first evidence of feathers in dromaeosaurids
Cast of a Caudipteryx fossil with feather impressions and stomach content
Fossil cast of a Sinornithosaurus millenii
Jinfengopteryx elegans fossil

A number of non-avialan dinosaurs are now known to have been feathered. Direct evidence of feathers exists for the following species, listed in the order currently accepted evidence was first published. In all examples, the evidence described consists of feather impressions, except those genera inferred to have had feathers based on skeletal or chemical evidence, such as the presence of quill knobs (the anchor points for wing feathers on the forelimb) or a pygostyle (the fused vertebrae at the tail tip which often supports large feathers).

  1. Avimimus portentosus (inferred 1987: quill knobs)
  2. Pelecanimimus polydon? (1994)
  3. Sinosauropteryx prima (1996)
  4. Protarchaeopteryx robusta (1997)
  5. GMV 2124 (1997)
  6. Caudipteryx zoui (1998)
  7. Rahonavis ostromi (inferred 1998: quill knobs; possibly avialan)
  8. Shuvuuia deserti (1999)
  9. Sinornithosaurus millenii (1999)
  10. Beipiaosaurus inexpectus (1999)
  11. Caudipteryx dongi (2000)
  12. Caudipteryx sp. (2000)
  13. Microraptor zhaoianus (2000)
  14. Nomingia gobiensis (inferred 2000: pygostyle)
  15. Psittacosaurus sp.? (2002)
  16. Scansoriopteryx heilmanni (2002; possibly avialan)
  17. Yixianosaurus longimanus (2003)
  18. Dilong paradoxus (2004)
  19. Pedopenna daohugouensis (2005; possibly avialan)
  20. Jinfengopteryx elegans (2005)
  21. Juravenator starki (2006)
  22. Sinocalliopteryx gigas (2007)
  23. Velociraptor mongoliensis (inferred 2007: quill knobs)
  24. Epidexipteryx hui (2008; possibly avialan)
  25. Similicaudipteryx yixianensis (inferred 2008: pygostyle; confirmed 2010)
  26. Anchiornis huxleyi (2009; possibly avialan)
  27. Tianyulong confuciusi? (2009)
  28. Xiaotingia zhengi (2011; possibly avialan)
  29. Yutyrannus huali (2012)
  30. Microraptor hanqingi (2012)
  31. Sciurumimus albersdoerferi (2012)
  32. Ornithomimus edmontonicus (2012)
  33. Ningyuansaurus wangi (2012)
  34. Eosinopteryx brevipenna (2013; possibly avialan)
  35. Jianchangosaurus yixianensis (2013)
  36. Aurornis xui (2013; possibly avialan)
  37. Changyuraptor yangi (2014)
  38. Kulindadromeus zabaikalicus? (2014)
  39. Citipati osmolskae (inferred 2014: pygostyle)
  40. Conchoraptor gracilis (inferred 2014: pygostyle)
  41. Deinocheirus mirificus (inferred 2014: pygostyle)
  • Note that the filamentous structures in some ornithischian dinosaurs (Psittacosaurus, Tianyulong and Kulindadromeus) and the pycnofibres found in some pterosaurs may or may not be homologous with the feathers of theropods.

Primitive feather types

Integumentary structures that gave rise to the feathers of birds are seen in the dorsal spines of reptiles and fish. A similar stage in their evolution to the complex coats of birds and mammals can be observed in living reptiles such as iguanas and Gonocephalus agamids. Feather structures are thought to have proceeded from simple hollow filaments through several stages of increasing complexity, ending with the large, deeply rooted, feathers with strong pens (rachis), barbs and barbules that birds display today.

According to Prum's (1999) proposed model, at stage I, the follicle originates with a cylindrical epidermal depression around the base of the feather papilla. The first feather resulted when undifferentiated tubular follicle collar developed out of the old keratinocytes being pushed out. At stage II, the inner, basilar layer of the follicle collar differentiated into longitudinal barb ridges with unbranched keratin filaments, while the thin peripheral layer of the collar became the deciduous sheath, forming a tuft of unbranched barbs with a basal calamus. Stage III consists of two developmental novelties, IIIa and IIIb, as either could have occurred first. Stage IIIa involves helical displacement of barb ridges arising within the collar. The barb ridges on the anterior midline of the follicle fuse together, forming the rachis. The creation of a posterior barb locus follows, giving an indeterminate number of barbs. This resulted in a feather with a symmetrical, primarily branched structure with a rachis and unbranched barbs. In stage IIIb, barbules paired within the peripheral barbule plates of the barb ridges, create branched barbs with rami and barbules. This resulting feather is one with a tuft of branched barbs without a rachis. At stage IV, differentiated distal and proximal barbules produce a closed, pennaceous vane. A closed vane develops when pennulae on the distal barbules form a hooked shape to attach to the simpler proximal barbules of the adjacent barb. Stage V developmental novelties gave rise to additional structural diversity in the closed pennaceous feather. Here, asymmetrical flight feathers, bipinnate plumulaceous feathers, filoplumes, powder down, and bristles evolved.

Some evidence suggests that the original function of simple feathers was insulation. In particular, preserved patches of skin in large, derived, tyrannosauroids show scutes, while those in smaller, more primitive, forms show feathers. This may indicate that the larger forms had complex skins, with both scutes and filaments, or that tyrannosauroids may be like rhinos and elephants, having filaments at birth and then losing them as they developed to maturity. An adult Tyrannosaurus rex weighed about as much as an African Elephant. If large tyrannosauroids were endothermic, they would have needed to radiate heat efficiently, and feathers would have interfered with this.

There is now an increasing body of evidence that supports the display hypothesis, which states that early feathers were colored and increased reproductive success. Coloration could have provided the original adaptation of feathers, implying that all later functions of feathers, such as thermoregulation and flight, were co-opted. This hypothesis has been supported by the discovery of pigmented feathers in multiple species. Supporting the display hypothesis is the fact that fossil feathers have been observed in a ground-dwelling herbivorous dinosaur clade, making it unlikely that feathers functioned as predatory tools or as a means of flight. Additionally, some specimens have iridescent feathers. Pigmented and iridescent feathers may have provided greater attractiveness to mates, providing enhanced reproductive success when compared to non-colored feathers. Current research shows that it is plausible that theropods would have had the visual acuity necessary to see the displays. In a study by Stevens (2006), the binocular field of view for Velociraptor has been estimated to be 55 to 60 degrees, which is about that of modern owls. Visual acuity for Tyrannosaurus has been predicted to be anywhere from about that of humans to 13 times that of humans. However, as both Velociraptor and Tyrannosaurus have a rather extended evolutionary relationship with the more basal theropods, it is unclear how much of this visual acuity data can be extrapolated.

The fact that precursors of feathers appeared and then were co-opted for insulation is already present in Gould and Vrba, 1982. The reason why such precursors appeared could be explained by a theory which is based on metabolic issue. Feathers are made of protein and contain substantial amounts of certain amino acids, especially cysteine. The protein complex at the base of the composition of the feather is keratin, which has disulfide bonds between amino acids that confer unique properties of stability and elasticity. The metabolism of amino acids containing sulfur proved to be toxic to the organism. If the sulfur amino acids are not catabolized at the final products of urea or uric acid but used for the synthesis of keratin instead, the release of hydrogen sulfide is extremely reduced or avoided. For an organism whose metabolism works at high internal temperatures of 40 °C or greater can be extremely important to prevent the excess production of hydrogen sulfide. This hypothesis could be consistent with the need for high metabolic rate of theropod dinosaurs.

It is not known with certainty at what point in archosaur phylogeny the earliest simple “protofeathers” arose, or whether they arose once or independently multiple times. Filamentous structures are clearly present in pterosaurs, and long, hollow quills have been reported in specimens of the ornithischian dinosaurs Psittacosaurus and Tianyulong. In 2009, Xu et al. noted that the hollow, unbranched, stiff integumentary structures found on a specimen of Beipiaosaurus were strikingly similar to the integumentary structures of Psittacosaurus and pterosaurs. They suggested that all of these structures may have been inherited from a common ancestor much earlier in the evolution of archosaurs, possibly in an ornithodire from the Middle Triassic or earlier. More recently, findings in Russia of the basal neornithischian Kulindadromeus report that although the lower leg and tail seemed to be scaled, "varied integumentary structures were found directly associated with skeletal elements, supporting the hypothesis that simple filamentous feathers, as well as compound feather-like structures comparable to those in theropods, were widespread amongst the whole dinosaur clade."

Display feathers are also known from dinosaurs that are very primitive members of the bird lineage, or Avialae. The most primitive example is Epidexipteryx, which had a short tail with extremely long, ribbon-like feathers. Oddly enough, the fossil does not preserve wing feathers, suggesting that Epidexipteryx was either secondarily flightless, or that display feathers evolved before flight feathers in the bird lineage. Plumaceous feathers are found in nearly all lineages of Theropoda common in the northern hemisphere, and pennaceous feathers are attested as far down the tree as the Ornithomimosauria. The fact that only adult Ornithomimus had wing-like structures suggests that pennaceous feathers evolved for mating displays.

Phylogeny and the inference of feathers in other dinosaurs

Fossil feather impressions are extremely rare and they require exceptional preservation conditions to form. Therefore only a few feathered dinosaur genera have been identified. All fossil feather specimens have been found to show certain similarities. Due to these similarities and through developmental research, almost all scientists agree that feathers could only have evolved once in dinosaurs. Feathers would then have been passed down to all later, more derived species, unless some lineages lost feathers secondarily. If a dinosaur falls at a point on an evolutionary tree within the known feather-bearing lineages, then its ancestors had feathers, and it is quite possible that it did as well. This technique, called phylogenetic bracketing, can also be used to infer the type of feathers a species may have had, since the developmental history of feathers is now reasonably well-known. All feathered species had filamentaceous or plumaceous (downy) feathers, with pennaceous feathers found among the more bird-like groups. The following cladogram is adapted from Godefroit et al., 2013.

Neotheropoda

Dilophosauridae (none known)

Orionides

Megalosauroidea (none known)

Avetheropoda

Carnosauria (none known)

Coelurosauria

Sciurumimus - filamentous feathers

Tyrannoraptora

Tyrannosauroidea (Dilong, Yutyrannus) – plumulaceous feathers

Sinocalliopteryx – plumulaceous feathers

Compsognathidae (Sinosauropteryx, GMV 2124) – plumulaceous feathers

Juravenator – filamentous feathers

Ornitholestes (none known)

Maniraptoriformes

Ornithomimosauria (Pelecanimimus?, Ornithomimus, Deinocheirus) – plumulaceous feathers

Maniraptora

Alvarezsauridae (Shuvuuia) – plumulaceous? feathers

Therizinosauroidea (Beipiaosaurus, Jianchangosaurus) – plumulaceous feathers

Pennaraptora

Oviraptorosauria (Avimimus, Nomingia, Caudipteryx, Similicaudipteryx, Protarchaeopteryx, Ningyuansaurus, Citipati, Conchoraptor) – pennaceous feathers

Paraves

Scansoriopterygidae (Scansoriopteryx, Epidexipteryx) – pennaceous feathers

Eosinopteryx – pennaceous feathers

Eumaniraptora

Dromaeosauridae (Sinornithosaurus, Microraptor, Velociraptor, Changyuraptor) – pennaceous feathers

Troodontidae (Jinfengopteryx) – pennaceous feathers

Avialae (birds)

}}

See also

References

  1. ^ Schweitzer, M.H.; Watt, J.A.; Avci, R.; Knapp, L.; Chiappe, L.; Norell, M.; Marshall, M. (1999). "Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous Alvarezsaurid,Shuvuuia deserti". Journal of Experimental Zoology. 285 (2): 146–57. doi:10.1002/(SICI)1097-010X(19990815)285:2<146::AID-JEZ7>3.0.CO;2-A. PMID 10440726.
  2. Huxley, T.H. (1868). "On the animals which are most nearly intermediate between birds and reptiles". Annals and Magazine of Natural History. 4th. 2: 66–75.
  3. Foster, Michael; Lankester, E. Ray 1898–1903. The scientific memoirs of Thomas Henry Huxley. 4 vols and supplement. London: Macmillan.
  4. Paul, Gregory S. (2000). "A Quick History of Dinosaur Art". In Paul, Gregory S. (ed.) (ed.). The Scientific American Book of Dinosaurs. New York: St. Martin's Press. pp. 107–112. ISBN 0-312-26226-4. {{cite book}}: |editor= has generic name (help)
  5. ^ Turner, A.H.; Makovicky, P.J.; Norell, M.A. (2007). "Feather quill knobs in the dinosaur Velociraptor" (pdf). Science. 317 (5845): 1721. Bibcode:2007Sci...317.1721T. doi:10.1126/science.1145076. PMID 17885130.
  6. Norell M.A., Clark J.M., Chiappe L.M., Dashzeveg D.; Clark; Chiappe; Dashzeveg (1995). "A nesting dinosaur". Nature. 378 (6559): 774–776. Bibcode:1995Natur.378..774N. doi:10.1038/378774a0.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Hopp, Thomas J., Orsen, Mark J. (2004) "Feathered Dragons: Studies on the Transition from Dinosaurs to Birds. Chapter 11. Dinosaur Brooding Behavior and the Origin of Flight Feathers" Currie, Koppelhaus, Shugar, Wright. Indiana University Press. Bloomington, IN. USA.
  8. "Transcript: The Dinosaur that Fooled the World". BBC. Retrieved 22 December 2006.
  9. Emily Chung (12 September 2011). "Dinosaur feathers found in Alberta amber". CBC. Retrieved 16 September 2011.
  10. Brian Switek (15 September 2011). "Amber inclusions showcase prehistoric feathers". Nature News. doi:10.1038/news.2011.539. Retrieved 22 September 2011.
  11. Stephen L. Brusatte, Graeme T. Lloyd, Steve C. Wang, Mark A. Norell (2014). "Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition". Current Biology. 24 (20): 2386–2392. doi:10.1016/j.cub.2014.08.034.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Kurzanov, S.M. (1987). "Avimimidae and the problem of the origin of birds." Transactions of the Joint Soviet-Mongolian Paleontological Expedition, 31: 5-92.
  13. Chiappe, L.M. and Witmer, L.M. (2002). Mesozoic Birds: Above the Heads of Dinosaurs. Berkeley: University of California Press, 536 pp. ISBN 0-520-20094-2
  14. Perez-Moreno B. P., Sanz J. L., Buscalioni A. D., Moratalla J. J., Ortega F., Raskin-Gutman D.; Luis Sanz; Buscalioni; Moratalla; Ortega; Rasskin-Gutman (1994). "A unique multitoothed ornithomimosaur from the Lower Cretaceous of Spain". Nature. 370 (6488): 363–367. Bibcode:1994Natur.370..363P. doi:10.1038/370363a0.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. Ji Q., Ji S. (1996). "On discovery of the earliest bird fossil in China and the origin of birds". Chinese Geology. 10 (233): 30–33.
  16. Ji, Q., and Ji, S. (1997). "A Chinese archaeopterygian, Protarchaeopteryx gen. nov." Geological Science and Technology (Di Zhi Ke Ji), 238: 38-41. Translated By Will Downs Bilby Research Center Northern Arizona University January 2001
  17. Ji, Q.; Ji, S. (1997). "Advances in Sinosauropteryx research". Chinese Geology. 7: 30–32.
  18. Currie, Philip J.; Qiang, Ji; Norell, Mark A.; Shu-An, Ji (1998). "Two feathered dinosaurs from northeastern China". Nature. 393 (6687): 753–761. Bibcode:1998Natur.393..753Q. doi:10.1038/31635.
  19. Agnolin, F.L.; Novas, F.E. (2011). "Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)?" (PDF). Anais da Academia Brasileira de Ciências. 83: 117–162. doi:10.1590/S0001-37652011000100008. Retrieved 23 April 2011.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. Forster, Catherine A. (1998a). "The Theropod Ancestry of Birds: New Evidence from the Late Cretaceous of Madagascar". Science. 279 (5358): 1915–1919. Bibcode:1998Sci...279.1915F. doi:10.1126/science.279.5358.1915. PMID 9506938. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help) (HTML abstract)
  21. Wu, Xiao-Chun; Xu, Xing; Wang, Xiao-Lin (1999). "A dromaeosaurid dinosaur with a filamentous integument from the Yixian Formation of China". Nature. 401 (6750): 262–266. Bibcode:1999Natur.401..262X. doi:10.1038/45769.
  22. Xu, Xing; Tang, Zhi-lu; Wang, Xiao-lin (1999). "A therizinosauroid dinosaur with integumentary structures from China". Nature. 399 (6734): 350–354. Bibcode:1999Natur.399..350X. doi:10.1038/20670.
  23. Zhou, Z.; Wang, X. (2000). "A new species of Caudipteryx from the Yixian Formation of Liaoning, northeast China" (PDF). Vertebrata Palasiatica. 38 (2): 113–130.
  24. Zhou, Z.; Wang, X.; Zhang, F.; Xu, X. (2000). "Important features of Caudipteryx - Evidence from two nearly complete new specimens" (PDF). Vertebrata Palasiatica. 38 (4): 241–254.
  25. Xu, Xing; Zhou, Zhonghe; Wang, Xiaolin (2000). "The smallest known non-avian theropod dinosaur" (PDF). Nature. 408 (6813): 705–708. doi:10.1038/35047056. PMID 11130069.
  26. Barsbold R., Osmólska H., Watabe M., Currie P.J., Tsogtbaatar K. (2000). "New Oviraptorosaur (Dinosauria, Theropoda) From Mongolia: The First Dinosaur With A Pygostyle" (PDF). Acta Palaeontologica Polonica. 45 (2): 97–106.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Mayr, Gerald; Peters, Stefan; Plodowski, Gerhard; Vogel, Olaf (2002). "Bristle-like integumentary structures at the tail of the horned dinosaur Psittacosaurus". Naturwissenschaften. 89 (8): 361–365. Bibcode:2002NW.....89..361M. doi:10.1007/s00114-002-0339-6. PMID 12435037. Cite error: The named reference "mayretal2002" was defined multiple times with different content (see the help page).
  28. Czerkas, S.A., and Yuan, C. (2002). "An arboreal maniraptoran from northeast China." Pp. 63-95 in Czerkas, S.J. (Ed.), Feathered Dinosaurs and the Origin of Flight. The Dinosaur Museum Journal 1. The Dinosaur Museum, Blanding, U.S.A. PDF abridged version
  29. Xu X., Wang X.-L. (2003). "A new maniraptoran from the Early Cretaceous Yixian Formation of western Liaoning". Vertebrata PalAsiatica. 41 (3): 195–202.
  30. ^ Xu, X., Norell, M. A., Kuang, X., Wang, X., Zhao, Q., Jia, C. (2004). "Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids". Nature. 431 (7009): 680–684. Bibcode:2004Natur.431..680X. doi:10.1038/nature02855. PMID 15470426.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. Hone D.W.E., Tischlinger H., Xu X., Zhang F. (2010). Farke, Andrew Allen (ed.). "The extent of the preserved feathers on the four-winged dinosaur Microraptor gui under ultraviolet light". PLoS ONE. 5 (2): e9223. Bibcode:2010PLoSO...5.9223H. doi:10.1371/journal.pone.0009223. PMC 2821398. PMID 20169153.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  32. Xu, Xing; Zhang, Fucheng (2005). "A new maniraptoran dinosaur from China with long feathers on the metatarsus". Naturwissenschaften. 92 (4): 173–177. Bibcode:2005NW.....92..173X. doi:10.1007/s00114-004-0604-y. PMID 15685441.
  33. Ji Q., Ji S., Lu J., You H., Chen W., Liu Y., Liu Y. (2005). "First avialan bird from China (Jinfengopteryx elegans gen. et sp. nov.)". Geological Bulletin of China. 24 (3): 197–205.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. Turner, Alan H. (2007). "A basal dromaeosaurid and size evolution preceding avian flight" (pdf). Science. 317 (5843): 1378–1381. Bibcode:2007Sci...317.1378T. doi:10.1126/science.1144066. PMID 17823350. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  35. Goehlich U.B., Tischlinger H., Chiappe L.M. (2006). "Juraventaor starki (Reptilia, Theropoda) ein nuer Raubdinosaurier aus dem Oberjura der Suedlichen Frankenalb (Sueddeutschland): Skelettanatomie und Wiechteilbefunde". Archaeopteryx. 24: 1–26.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. Chiappe, Luis M.; Göhlich, Ursula B. (2010). "Anatomy of Juravenator starki (Theropoda: Coelurosauria) from the Late Jurassic of Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 258 (3): 257–296. doi:10.1127/0077-7749/2010/0125.
  37. Ji S., Ji Q., Lu J., Yuan C. (2007). "A new giant compsognathid dinosaur with long filamentous integuments from Lower Cretaceous of Northeastern China". Acta Geologica Sinica. 81 (1): 8–15.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Zhang, Fucheng; Zhou, Zhonghe; Xu, Xing; Wang, Xiaolin; Sullivan, Corwin (2008). "A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers". Nature. 455 (7216): 1105–1108. doi:10.1038/nature07447. PMID 18948955. Cite error: The named reference "zhangnature2008" was defined multiple times with different content (see the help page).
  39. He T., Wang X.-L., Zhou Z.-H. (2008). "A new genus and species of caudipterid dinosaur from the Lower Cretaceous Jiufotang Formation of western Liaoning, China". Vertebrata PalAsiatica. 46 (3): 178–189.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. Xu, Xing; Zheng, Xiaoting; You, Hailu (2010). "Exceptional dinosaur fossils show ontogenetic development of early feathers". Nature. 464 (7293): 1338–1341. Bibcode:2010Natur.464.1338X. doi:10.1038/nature08965. PMID 20428169.
  41. Xu, X., Zhao, Q., Norell, M., Sullivan, C., Hone, D., Erickson, G., Wang, X., Han, F. and Guo, Y. (in press). "A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin." Chinese Science Bulletin, 6 pages, accepted 15 November 2008.
  42. ^ Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming (2009). "An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures". Nature. 458 (7236): 333–336. Bibcode:2009Natur.458..333Z. doi:10.1038/nature07856. PMID 19295609.
  43. Xing Xu, Hailu You, Kai Du and Fenglu Han (28 July 2011). "An Archaeopteryx-like theropod from China and the origin of Avialae". Nature. 475 (7357): 465–470. doi:10.1038/nature10288. PMID 21796204.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. Xu, Xing; Wang, Kebai; Zhang, Ke; Ma, Qingyu; Xing, Lida; Sullivan, Corwin; Hu, Dongyu; Cheng, Shuqing; Wang, Shuo (2012). "A gigantic feathered dinosaur from the Lower Cretaceous of China". Nature. 484 (7392): 92–95. Bibcode:2012Natur.484...92X. doi:10.1038/nature10906. PMID 22481363. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  45. En-Pu Gong, Larry D. Martin, David A. Burnham, Amanda R. Falk and Lian-Hai Hou (2012). "A new species of Microraptor from the Jehol Biota of northeastern China". Palaeoworld. in press (2): 81. doi:10.1016/j.palwor.2012.05.003.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1073/pnas.1203238109 , please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1073/pnas.1203238109 instead.
  47. Darla K. Zelenitsky, François Therrien, Gregory M. Erickson, Christopher L. DeBuhr, Yoshitsugu Kobayashi, David A. Eberth and Frank Hadfield (2012). "Feathered Non-Avian Dinosaurs from North America Provide Insight into Wing Origins". Science. 338 (6106): 510–514. Bibcode:2012Sci...338..510Z. doi:10.1126/science.1225376. PMID 23112330.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. Ji Qiang, Lü Jun-Chang, Wei Xue-Fang, Wang Xu-Ri (2012). "A new oviraptorosaur from the Yixian Formation of Jianchang, Western Liaoning Province, China". Regional Geology of China (12): 2102–2107.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. Pascal Godefroit, Helena Demuynck, Gareth Dyke, Dongyu Hu, François Escuillié and Philippe Claeys (2013). "Reduced plumage and flight ability of a new Jurassic paravian theropod from China". Nature Communications. 4: Article number 1394. Bibcode:2013NatCo...4E1394G. doi:10.1038/ncomms2389. PMID 23340434.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. Hanyong Pu, Yoshitsugu Kobayashi, Junchang Lü, Li Xu, Yanhua Wu, Huali Chang, Jiming Zhang, Songhai Jia; Kobayashi; Lü; Xu; Wu; Chang; Zhang; Jia (2013). "An unusual basal therizinosaur dinosaur with an ornithischian dental arrangement from northeastern China". PLoS ONE. 8 (5): Article number e63423. Bibcode:2013PLoSO...863423P. doi:10.1371/journal.pone.0063423.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  51. Pascal Godefroit, Andrea Cau, Hu Dong-Yu, François Escuillié, Wu Wenhao, and Gareth Dyke (2013). "A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds". Nature. 498: 359–362. doi:10.1038/nature12168.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. Gang Han, Luis M. Chiappe,Shu-An Ji, Michael Habib, Alan H. Turner, Anusuya Chinsamy, Xueling Liu, Lizhuo Han; Chiappe; Ji; Habib; Turner; Chinsamy; Liu; Han (2014). "A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance". Nature Communications. 5: Article number 4382. doi:10.1038/ncomms5382.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. Pascal Godefroit, Sofia M. Sinitsa, Danielle Dhouailly, Yuri L. Bolotsky, Alexander V. Sizov, Maria E. McNamara, Michael J. Benton, Paul Spagna; Sinitsa; Dhouailly; Bolotsky; Sizov; McNamara; Benton; Spagna (2014). "A Jurassic ornithischian dinosaur from Siberia with both feathers and scales". Science. 25 (345): 451–455. doi:10.1126/science.1253351.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  54. ^ W. Scott Persons, IV, Philip J. Currie, and Mark A. Norell (2014). "Oviraptorosaur tail forms and functions". Acta Palaeontologica Polonica. doi:10.4202/app.2012.0093.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  55. Yuong-Nam Lee, Rinchen Barsbold, Philip J. Currie, Yoshitsugu Kobayashi, Hang-Jae Lee, Pascal Godefroit, François Escuillié, and Tsogtbaatar Chinzorig (2014). "Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus". Nature. doi:10.1038/nature13874.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  56. Czerkas, S.A., and Ji, Q. (2002). "A new rhamphorhynchoid with a headcrest and complex integumentary structures." Pp. 15-41 in: Czerkas, S.J. (Ed.). Feathered Dinosaurs and the Origin of Flight. Blanding, Utah: The Dinosaur Museum. ISBN 1-932075-01-1.
  57. Prum, R. & Brush A.H.; Brush (2002). "The evolutionary origin and diversification of feathers". The Quarterly Review of Biology. 77 (3): 261–295. doi:10.1086/341993. PMID 12365352.
  58. Prum, R (1999). "Development and evolutionary origin of feathers". Journal of Experimental Zoology. 285 (4): 291–306. doi:10.1002/(SICI)1097-010X(19991215)285:4<291::AID-JEZ1>3.0.CO;2-9. PMID 10578107.
  59. Norell, M. Xu, X. (2005) "The Varieties of Tyrannosaurs" Natural History Magazine May 2005.
  60. ^ Dimond, C. C.,R. J. Cabin and J. S. Brooks (2011). "Feathers, Dinosaurs, and Behavioral Cues: Defining the Visual Display Hypothesis for the Adaptive Function of Feathers in Non-Avian Theropods". BIOS. 82 (3): 58–63. doi:10.1893/011.082.0302.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. Sumida, S. S. and C. A. Brochu (2000). "Phylogenetic Context for the Origin of Feathers". American Zoologist. 40 (4): 485–503. doi:10.1093/icb/40.4.486.
  62. Lingham-Soliar, T. (2011). "The evolution of the feather: Sinosauropteryx, a colourful tail". Journal of Ornithology. 152 (3): 567–577. doi:10.1007/s10336-010-0620-y.
  63. Vinther, J., D. E. G. Briggs, R. O. Prum and V. Saranathan (2008). "The colour of fossil feathers". Biology Letters. 4 (5): 522–525. doi:10.1098/rsbl.2008.0302. PMC 2610093. PMID 18611841.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. Zhang, F. C., S. L. Kearns, P. J. Orr, M. J. Benton, Z. H. Zhou, D. Johnson, X. Xu X. L. Wang; Kearns; Orr; Benton; Zhou; Johnson; Xu; Wang (2010). "Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds". Nature. 463 (7284): 1075–1078. Bibcode:2010Natur.463.1075Z. doi:10.1038/nature08740. PMID 20107440.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  65. Zelenitsky, Darla K.; Therrien, Francois; Erickson, Gregory M.; DeBuhr, Christopher L.; Kobayashi, Yoshitsugu; Eberth, David A.; Hadfield, Frank (10/26/12). "Feathered Non-Avian Dinosaurs From North America Provide Insight into Wing Origins". Science 338 (510). doi:10.1126/science.1225376
  66. Li, Q. G.,K. Q. Gao,Q. J. Meng,M. D. Shawkey,L. D'Alba,R. Pei,M. Ellison,M. A. Norell and J. Vinther (2012). "Reconstruction of Microraptor and the Evolution of Iridescent Plumage". Science. 335 (6073): 1215–1219. Bibcode:2012Sci...335.1215L. doi:10.1126/science.1213780. PMID 22403389.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  67. Stevens, K.A. (20006). "Journal of Vertebrate Paleontology". 26: 11746–11751. {{cite journal}}: Check date values in: |year= (help); Cite journal requires |journal= (help)CS1 maint: year (link)
  68. Gould, Stephen J. and Vrba, Elisabeth S. (1982). "Exaptation: a missing term in the science of form" (PDF). Paleobiology. 8 (1): 4–15.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. Reichholf, J. H. (1996). "Die Feder, die Mauser und der Urspring der Vögel. Ein neure Sicht zur Evolution der Vögel". Archaeopteryx. 1427 (38).
  70. Bock, W. J. (2000). "Explanatory History of the Origin of Feathers". Amer. Zool. 40 (4): 478–485. doi:10.1093/icb/40.4.478.
  71. Xu, X.; Zheng, X.; You, H. (2009). "A new feather type in a nonavian theropod and the early evolution of feathers". Proceedings of the National Academy of Sciences. 106 (3): 832–4. Bibcode:2009PNAS..106..832X. doi:10.1073/pnas.0810055106. PMC 2630069. PMID 19139401.
  72. http://dml.cmnh.org/2013Nov/msg00010.html
  73. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1126/science.1225376, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1126/science.1225376 instead.
  74. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1038/nature12168 , please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1038/nature12168 instead.

External links

  • DinoBuzz, dinosaur-bird controversy explained, by UC Berkeley.
Categories: