This is an old revision of this page, as edited by Trurle (talk | contribs) at 01:17, 17 April 2022 (categorize). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 01:17, 17 April 2022 by Trurle (talk | contribs) (categorize)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Virgo |
Right ascension | 13 29 59.7859 |
Declination | 10° 22′ 37.7845″ |
Apparent magnitude (V) | 9.029 |
Characteristics | |
Evolutionary stage | main-sequence star |
Spectral type | M0Ve |
Apparent magnitude (J) | 5.902±0.018 |
Apparent magnitude (H) | 5.300±0.033 |
Astrometry | |
Radial velocity (Rv) | 14.606 km/s |
Proper motion (μ) | RA: 1127.34±0.03 mas/yr Dec.: -1073.888±0.013 mas/yr |
Parallax (π) | 131.1013 ± 0.0270 mas |
Distance | 24.878 ± 0.005 ly (7.628 ± 0.002 pc) |
Absolute magnitude (MV) | 5.89 |
Details | |
Mass | 0.526 M☉ |
Radius | 0.611±0.043 R☉ |
Luminosity (bolometric) | 0.043 L☉ |
Surface gravity (log g) | 4.59 cgs |
Temperature | 2901 - 3727 K |
Metallicity | -0.7 to +0.34 dex |
Rotation | 28.0±2.9 |
Rotational velocity (v sin i) | 2.00 km/s |
Age | >0.8 Gyr |
Other designations | |
BD+11 2576, HIP 65859, LTT 13925, Ross 490, TYC 895-317-1, 2MASS J13295979+1022376, Gaia EDR3 3738099879558957952 | |
Database references | |
SIMBAD | 2576 data |
Gliese 514, also known as BD+11 2576 or HIP 65859, is a M-type main-sequence star, lying in constellation Virgo 24.85 light-years away from the Sun. The proximity of Gliese 514 to the Sun was known exactly since 1988.
Gliese 514 metallicity Fe/H index is largely unknown, with median values from -0.4 to +0.18 reported in literature. This discrepancy due to unusual peculiarities of the stellar spectrum of Gliese 514. The spectrum peculiarities also affects accuracy of star temperature measurement, with reported values as low as 2901 K. The spectrum of Gliese 514 shows emission lines, but star itself has a low starspot activity.
Multiplicity surveys did not detect any stellar companions as of 2020.
The Sun is currently calculated to be passing through the tidal tail of Gliese 514`s Oort cloud, therefore some of the future interstellar objects passing through Solar system may originate from Gliese 514.
Planetary system
The existence of planets around Gliese 514 was suspected since 2019. In 2022, one Super-Earth planet, named Gliese 514 b, was discovered on an eccentric orbit by the radial velocity method. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to 211 K.
The infrared excess of star also indicates a possible presence of debris disk in the system, albeit at low signal to noise ratio.
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | — | 0.422 −0.015 |
140.43±0.41 | 0.45 −0.14 |
— | — |
References
- ^ "BD+11 2576". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2022-04-17.
- ^ Astrometric radial velocities for nearby stars, 2021, arXiv:2105.09014
- ^ Metallicity determination of M dwarfs Expanded parameter range in metallicity and effective temperature, 2017, arXiv:1705.08785
- PENELLOPE: The ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES) I. Survey presentation and accretion properties of Orion OB1 and σ-Orionis, 2021, arXiv:2103.12446
- ^ Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
- ^ Understanding Physical Properties of Young M-dwarfs: NIR spectroscopic studies, 2020, arXiv:2002.05762
- ^ First Results from the CHARA Array. IV. The Interferometric Radii of Low-Mass Stars, 2006, arXiv:astro-ph/0602105
- ^ Comparative high-resolution spectroscopy of M dwarfs – exploring non-LTE effects, 2021, arXiv:2102.08836
- ^ A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514 A super-Earth on an eccentric orbit moving in and out of the habitable zone, 2022, arXiv:2204.06376
- Determinations of the parallaxes of BD +11 2576 and BD +18 683
- The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation
- Robo-AO M Dwarf Multiplicity Survey: Catalog, 2020, arXiv:2001.05988
- Oort cloud Ecology I. Extra-solar Oort clouds and the origin of asteroidal interlopers
- Barnes, J. R.; et al. (2019-06-11). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 .
- Herschel Observations of Disks Around Late-type Stars, 2020, arXiv:2004.12597