Misplaced Pages

Ceruletide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is the current revision of this page, as edited by Entranced98 (talk | contribs) at 12:33, 13 May 2023 (Importing Wikidata short description: "Chemical compound"). The present address (URL) is a permanent link to this version.

Revision as of 12:33, 13 May 2023 by Entranced98 (talk | contribs) (Importing Wikidata short description: "Chemical compound")(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Chemical compound Pharmaceutical compound
Ceruletide
Clinical data
AHFS/Drugs.comInternational Drug Names
ATC code
Identifiers
IUPAC name
  • (3S)-3-{carbamoyl}-3-formamido}butanamido]-3-carboxypropanamido]-3-propanamido]-3-hydroxybutanamido]acetamido}-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]propanoic acid
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC58H73N13O21S2
Molar mass1352.41 g·mol
  (what is this?)  (verify)

Ceruletide (INN), also known as cerulein or caerulein, is a ten amino acid oligopeptide that stimulates smooth muscle and increases digestive secretions. Ceruletide is similar in action and composition to cholecystokinin. It stimulates gastric, biliary, and pancreatic secretion; and certain smooth muscle. It is used in paralytic ileus and as diagnostic aid in pancreatic malfunction. It is used to induce pancreatitis in experimental animal models.

The tree frog Ranoidea caerulea, formerly named Hyla caerulae.

Ceruletide was discovered and its structure elucidated in 1967 by Australian and Italian scientists from dried skins of the Australian green tree frog (Ranoidea caerulea, formerly Hyla caerulea). Its amino acid sequence is Pglu-Gln-Asp-Tyr-Thr-Gly-Trp-Met-Asp-Phe-NH2.

Induction of pancreatitis

Ceruletide upregulates pancreatic acinar cell intercellular adhesion molecule-1 (ICAM-1) proteins through intracellular upregulation of NF-κB. Surface ICAM-1 in turn promotes neutrophil adhesion onto acinar cells enhancing pancreatic inflammation. In addition to promoting the inflammatory cell reaction to acinar cells, ceruletide induces pancreatitis through dysregulation of digestive enzyme production and cytoplasmic vacuolization, leading to acinar cell death and pancreatic edema. Ceruletide also activates NADPH oxidase, a source of reactive oxygen species contributing to inflammation, as well as the Janus kinase/signal transducer, another inflammation inducer.

See also

References

  1. Anastasi A, Erspamer V, Endean R (September 1967). "Isolation and structure of caerulein, an active decapeptide from the skin of Hyla caerulea". Experientia. 23 (9): 699–700. doi:10.1007/BF02154119. PMID 6062875.
  2. De Caro G, Endean R, Erspamer V, Roseghini M (May 1968). "Occurrence of caerulein in extracts of the skin of Hyla caerulea and other Australian hylids". British Journal of Pharmacology and Chemotherapy. 33 (1): 48–58. doi:10.1111/j.1476-5381.1968.tb00473.x. PMC 1570274. PMID 5660165.
  3. Zaninovic V, Gukovskaya AS, Gukovsky I, Mouria M, Pandol SJ (October 2000). "Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells". American Journal of Physiology. Gastrointestinal and Liver Physiology. 279 (4): G666-76. doi:10.1152/ajpgi.2000.279.4.G666. PMID 11005752.
  4. Kim H (September 2008). "Cerulein pancreatitis: oxidative stress, inflammation, and apoptosis". Gut and Liver. 2 (2): 74–80. doi:10.5009/gnl.2008.2.2.74. PMC 2871591. PMID 20485614.
Diagnostic agents (V04)
Digestive system
Diabetes
Fat absorption
Bile duct patency
Liver functional capacity
Gastric secretion
Exocrine pancreatic function
Endocrine system
Pituitary function
Thyroid function
Fertility disturbances
Tuberculosis
Renal function
Category: