Misplaced Pages

Chemical element

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Rursus (talk | contribs) at 08:28, 19 March 2007 (Atomic mass). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 08:28, 19 March 2007 by Rursus (talk | contribs) (Atomic mass)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
The periodic table of the chemical elements

A chemical element, or element for short, is a type of atom that is defined by its atomic number; that is, by the number of protons in its nucleus. The term is also used to refer to a pure chemical substance composed of atoms with the same number of protons.

Common examples of elements are hydrogen, nitrogen, and carbon. In total, 117 elements have been observed as of 2007, of which 94, i.e. plutonium and below, occur naturally on Earth. Elements with atomic numbers greater than 82 (i.e,. bismuth and those above), are inherently unstable and undergo radioactive decay. In addition, elements 43 and 61 (technetium and promethium) have no stable isotopes, and also decay. However, the unstable elements up to atomic number 94 with no stable nuclei are found in nature as a result of the natural decay processes of uranium and thorium.

All chemical matter consists of these elements. New elements are discovered from time to time through artificial nuclear reactions.

History

The term 'elements' (stoicheia) was first used by the Greek philosopher Plato in about 360 BC, in his dialogue Timaeus, which includes a discussion of the composition of inorganic and organic bodies and is a rudimentary treatise on chemistry. Plato assumed that the minute particle of each element had a special geometric shape: tetrahedron (fire), octahedron (air), icosahedron (water), and cube (earth).

Tetrahedron (fire) Octahedron (air) Icosahedron (water) Cube (earth)

Adding to the four elements of the Greek philosopher Empedocles, in about 350 BC, Aristotle also used the term "element" and conceived of a fifth element called "quintessence", which formed the heavens. Aristotle defined an element as:

Element – one of those bodies into which other bodies can be decomposed and which itself is not capable of being divided into other.

In 1661, Robert Boyle showed that there were more than just four classical elements as the ancients had assumed. The first modern list of chemical elements was given in Antoine Lavoisier's 1789 Elements of Chemistry, which contained thirty-three elements, including light and caloric. By 1818, Berzelius had determined atomic weights for forty-five of the forty-nine accepted elements. In 1869, in Mendeleev's famous periodic table, shown below, there were sixty-six elements.

Mendeleev's 1869 periodic table

From Boyle until the early 20th century, an element was defined as a pure substance that cannot be decomposed into any simpler substance. Said another way, an "element" cannot be transformed into other chemical substances by chemical processes. In 1913, Henry Moseley discovered that the physical basis of the atomic number of the atom was its nuclear charge, which eventually led to the current definition. The current definition also avoids some ambiguities due to isotopes and allotropes.

By 1919, there were seventy-two known elements. In 1955, element 101 was discovered and named mendelevium in honor of Mendeleev, the first to arrange the elements in a periodic manner. In October of 2006, the synthesis of element 118 was reported; however, element 117 has not yet been created in the laboratory.

Description

The lightest elements are hydrogen and helium. All the heavier elements are made, both naturally and artificially, through various methods of nucleosynthesis, including occasionally nuclear fission.

As of 2006, there are 117 known elements (in this context, "known" means observed well enough, even from just a few decay products, to have been differentiated from any other element). Of these 117 elements, 94 occur naturally on Earth. Six of these occur in extreme trace quantities: technetium, atomic number 43; promethium, number 61; astatine, number 85; francium, number 87; neptunium, number 93; and plutonium, number 94. These 94 elements, and also possibly element 98 californium, have been detected in the universe at large, in the spectra of stars and also supernovae, where short-lived radioactive elements are newly being made.

The remaining 22 elements not found on Earth or in astronomical spectra have been derived artificially. All of the solely-artificially derived elements are radioactive with very short half-lives; if any atoms of these elements were present at the formation of Earth, they are extremely likely to have already decayed, and if present in novae, have are in quantities too small to have been noted. Technetium was the first purportedly non-naturally occurring element to be synthesized, in 1937, although trace amounts of technetium have since been found in nature, and the element may have been discovered naturally in 1925. This pattern of artificial production and later natural discovery has been repeated with several other radioactive naturally-occurring trace elements.

Lists of the elements by name, by symbol, by atomic number, by density, by melting point, and by boiling point as well as Ionization energies of the elements are available. The most convenient presentation of the elements is in the periodic table, which groups elements with similar chemical properties together.

Atomic number

The atomic number of an element, Z, is equal to the number of protons which defines the element. For example, all carbon atoms contain 6 protons in their nucleus; so for carbon Z=6. These atoms may have different numbers of neutrons, which are known as isotopes of the element.

Atomic mass

The mass number of an element, A, is the number of nucleons (protons and neutrons) in the atomic nucleus. Different isotopes of a given element are distinguished by their mass numbers, which are conventionally written as a super-index on the left hand side of the atomic symbol (e.g., U).

The relative atomic mass of an element is the average of the atomic masses of all the chemical element's isotopes as found in a particular environment, weighted by isotopic abundance, relative to the atomic mass unit (amu). The atomic mass of a pure isotope is close to its mass number, but not exactly; whereas the mass number is a natural number, the atomic mass is a real number, which in general differs slightly from the mass number because the mass of the protons and neutrons is not exactly 1 amu, because the electrons also contribute slightly to the atomic mass, and because of the nuclear binding energy. For example, the mass of F is 18.9984032. The only exception is C, which has a mass of exactly 12 by the definition of amu.

Isotopes

Some isotopes are radioactive and decay into other elements upon radiating an alpha or beta particle. Certain elements have no nonradioactive isotopes: specifically the elements without any stable isotopes are technetium (atomic number 43), promethium (atomic number 61), and all observed elements with atomic numbers greater than 82.

Allotropy

Some elements can be found as multiple elementary substances, known as allotropes, which differ in their structure and properties. For example, carbon can be found as diamond, which has a tetrahedral structure around each carbon atom; graphite, which has layers of carbon atoms with a hexagonal structure, and fullerenes, which have nearly spherical shapes.

Standard state

The standard state, or reference state, of an element is defined as its thermodynamically most stable state at 1 bar at a given temperature (typically at 298.15 K). In thermochemistry, an element is defined to have an enthalpy of formation of zero in its standard state. For example, the reference state for carbon is graphite, because it is more stable than the other allotropes.

Nomenclature

The naming of elements precedes the atomic theory of matter, although at the time it was not known which chemicals were elements and which compounds. When it was learned, existing names (e.g., gold, mercury, iron) were kept in most countries, and national differences emerged over the names of elements either for convenience, linguistic niceties, or nationalism. For example, the Germans use "Wasserstoff" for "hydrogen" and "Sauerstoff" for "oxygen", while English and some romance languages use "sodium" for "natrium" and "potassium" for "kalium", and the French, Greeks and Poles prefer "azote/azot" for "nitrogen".

But for international trade, the official names of the chemical elements both ancient and recent are decided by the International Union of Pure and Applied Chemistry, which has decided on a sort of international English language. That organization has recently prescribed that "aluminium" and "caesium" take the place of the US spellings "aluminum" and "cesium", while the US "sulfur" takes the place of the British "sulphur". But chemicals which are practicable to be sold in bulk within many countries, however, still have national names, and those which do not use the Latin alphabet cannot be expected to use the IUPAC name. According to IUPAC, the full name of an element is not capitalized, even if it is derived from a proper noun such as the elements californium or einsteinium (unless it would be capitalized by some other rule). Isotopes of chemical elements are also uncapitalized if written out: carbon-12 or uranium-235.

In the second half of the twentieth century physics laboratories became able to produce nuclei of chemical elements that have a half life too short for them to remain in any appreciable amounts. These are also named by IUPAC, which generally adopts the name chosen by the discoverer. This can lead to the controversial question of which research group actually discovered an element, a question which delayed the naming of elements with atomic number of 104 and higher for a considerable time. (See element naming controversy).

Precursors of such controversies involved the nationalistic namings of elements in the late nineteenth century. For example, lutetium was named in reference to Paris, France. The Germans were reluctant to relinquish naming rights to the French, often calling it cassiopeium. The British discoverer of niobium originally named it columbium, in reference to the New World. It was used extensively as such by American publications prior to international standardization.

Chemical symbols

For the listing of current and not used Chemical symbols, and other symbols that look like chemical symbols, please see List of elements by symbol.

Specific chemical elements

Before chemistry became a science, alchemists had designed arcane symbols for both metals and common compounds. These were however used as abbreviations in diagrams or procedures; there was no concept of atoms combining to form molecules. With his advances in the atomic theory of matter, John Dalton devised his own simpler symbols, based on circles, which were to be used to depict molecules.

The current system of chemical notation was invented by Berzelius. In this typographical system chemical symbols are not used as mere abbreviations - though each consists of letters of the Latin alphabet - they are symbols intended to be used by peoples of all languages and alphabets. The first of these symbols were intended to be fully universal; since Latin was the common language of science at that time, they were abbreviations based on the Latin names of metals - Fe comes from Ferrum, Ag from Argentum. The symbols were not followed by a period (full stop) as abbreviations were. Later chemical elements were also assigned unique chemical symbols, based on the name of the element, but not necessarily in English. For example, sodium has the chemical symbol 'Na' after the Latin natrium. The same applies to "W" (wolfram) for tungsten, "Hg" (hydrargyrum) for mercury, "K" (kalium) for potassium, "Au" (aurum) for gold, "Pb" (plumbum) for lead, and "Sb" (stibium) for antimony.

Chemical symbols are understood internationally when element names might need to be translated. There are sometimes differences; for example, the Germans have used "J" instead of "I" for iodine, so the character would not be confused with a roman numeral.

The first letter of a chemical symbol is always capitalized, as in the preceding examples, and the subsequent letters, if any, are always lower case (small letters).

General chemical symbols

There are also symbols for series of chemical elements, for comparative formulas. These are one capital letter in length, and the letters are reserved so they are not permitted to be given for the names of specific elements. For example, an "X" is used to indicate a variable group amongst a class of compounds (though usually a halogen), while "R" is used for a radical, meaning a compound structure such as a hydrocarbon chain. The letter "Q" is reserved for "heat" in a chemical reaction. "Y" is also often used as a general chemical symbol, although it is also the symbol of yttrium. "Z" is also frequently used as a general variable group. "L" is used to represent a general ligand in inorganic and organometallic chemistry. "M" is also often used in place of a general metal.

Isotope symbols

The three main isotopes of the element hydrogen are often written as H for protium, D for deuterium and T for tritium. This is in order to make it easier to use them in chemical equations, as it replaces the need to write out the mass number for each atom. It is written like this:

D2O (heavy water)

Instead of writing it like this:

H2O

Abundance

Main article: Abundance of the chemical elements

During the early phases of the Big Bang, nucleosynthesis of hydrogen nuclei resulted in the production of hydrogen and helium isotopes, as well as very minuscule amounts (on the order of 10) of lithium and berylium. No heavier elements were produced. As a result, the primordial abundance of atoms consisted of roughly 75% H, 25% He, and 0.01% deuterium. Subsequent enrichment of galactic halos occurred due to Stellar nucleosynthesis and Supernova nucleosynthesis. However intergalactic space can still closely resemble the primordial abundance, unless it has been enriched by some means.

The following table shows the ten most common elements in our galaxy (estimated spectroscopically), as measured in parts per million, by mass. Nearby galaxies that have evolved along similar lines have a corresponding enrichment of elements heavier than hydrogen and helium. The more distant galaxies are being viewed as they appeared in the past, so their abundances of elements appear closer to the primordial mixture. As physical laws and processes appear common throughout the visible universe, however, it is expected that these galaxies will likewise have evolved similar abundances of elements.

Element Parts per million
by mass
Hydrogen 739,000
Helium 240,000
Oxygen 10,700
Carbon 4,600
Neon 1,340
Iron 1,090
Nitrogen 970
Silicon 650
Magnesium 580
Sulfur 440

Recently discovered elements

The first transuranium element (element with atomic number greater than 92) discovered was neptunium in 1940. The heaviest element that has been found to date is element 118, ununoctium, which was successfully synthesized on October 9, 2006, by the Flerov Laboratory of Nuclear Reactions in Dubna, Russia

Element 117, ununseptium, has not yet been created or discovered, although its place in the periodic table is preestablished, and likewise for possible elements beyond 118.

References

  1. IUPAC Compendium of Chemical Terminology, Electronic version, http://goldbook.iupac.org/C01022.html. (Accessed March 2007)
  2. A. Earnshaw, Norman Greenwood. Chemistry of the Elements, Second Edition. Butterworth-Heinemann, 1997
  3. Hillar, Marian (2004). "The Problem of the Soul in Aristotle's De anima". NASA WMAP. Retrieved 2006-08-10.
  4. Partington, J.R. (1937). A Short History of Chemistry. New York: Dover Publications, Inc. ISBN 0486659771.
  5. ^ Boyle, Robert (1661). The Sceptical Chymist. London.
  6. Carey, George, W. (1914). The Chemistry of Human Life. Los Angeles. {{cite book}}: Cite has empty unknown parameter: |1= (help)CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link)
  7. Sanderson, Katherine (17 October 2006). "Heaviest element made - again". nature@news.com. Nature (journal). Retrieved 2006-10-19. {{cite web}}: Check date values in: |date= (help)
  8. Phil Schewe and Ben Stein (17 October 2006). "Elements 116 and 118 Are Discovered". Physics News Update. American Institute of Physics. Retrieved 2006-10-19. {{cite web}}: Check date values in: |date= (help)
  9. Wright, Edward L. (September 12, 2004). "Big Bang Nucleosynthesis". UCLA Division of Astronomy. Retrieved 2007-02-22. {{cite web}}: Check date values in: |date= (help)
  10. G. Wallerstein, I. Iben Jr., P. Parker, A. M. Boesgaard, G. M. Hale, A. E. Champagne, C. A. Barnes, F. KM-dppeler, V. V. Smith, R. D. Hoffman, F. X. Timmes, C. Sneden, R.N. Boyd, B.S. Meyer, D.L. Lambert (1999). "Synthesis of the elements in stars: forty years of progress" (pdf). Reviews of Modern Physics. 69 (4): 995–1084. Retrieved 2006-08-04. {{cite journal}}: line feed character in |author= at position 16 (help)CS1 maint: multiple names: authors list (link)
  11. "Controversy-Plagued Element 118, the Heaviest Atom Yet, Finally Discovered". 2006-10-13.

See also

External links

Chemical information

Category: