Misplaced Pages

Silylene

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is the current revision of this page, as edited by Hritwik1 (talk | contribs) at 20:53, 8 December 2024. The present address (URL) is a permanent link to this version.

Revision as of 20:53, 8 December 2024 by Hritwik1 (talk | contribs)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
generic silylene
Simplest silylene has R=Hydrogen
Names
IUPAC name Silylene
Systematic IUPAC name Silylidene
Other names Hydrogen silicide(−II)
Silicene
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/H2Si/h1H2Key: XMIJDTGORVPYLW-UHFFFAOYSA-N
SMILES
Properties
Chemical formula H2Si
Molar mass 30.101 g·mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Silylene is a chemical compound with the formula SiR2. It is the silicon analog of carbene. Due to presence of a vacant p orbital, silylene rapidly reacts in a bimolecular manner when condensed. Unlike carbenes, which can exist in the singlet or triplet state, silylene (and all of its derivatives) are singlets.

Silylenes are formal derivatives of silylene with its hydrogens replaced by other substituents. Most examples feature amido (NR2) or alkyl/aryl groups. Silylenes have been proposed as reactive intermediates. They are carbene analogs.

Synthesis and properties

Silylenes are generally synthesized by thermolysis or photolysis of polysilanes, by silicon atom reactions (insertion, addition or abstraction), by pyrolysis of silanes, or by reduction of 1,1-dihalosilane. It has long been assumed that the conversion of metallic Si to tetravalent silicon compounds proceeds via silylene intermediates:

Si + Cl2 → SiCl2
SiCl2 + Cl2 → SiCl4

Similar considerations apply to the direct process, the reaction of methyl chloride and bulk silicon.

Early observations of silylenes involved generation of dimethylsilylene by dechlorination of dimethyldichlorosilane:

SiCl2(CH3)2 + 2 K → Si(CH3)2 + 2 KCl

The formation of dimethylsilylene was demonstrated by conducting the dechlorination in the presence of trimethylsilane, the trapped product being pentamethyldisilane:

Si(CH3)2 + HSi(CH3)3 → (CH3)2Si(H)−Si(CH3)3

A room-temperature isolable N-heterocyclic silylene is N,N′-di-tert-butyl-1,3-diaza-2-silacyclopent-4-en-2-ylidene, first described in 1994 by Michael K. Denk et al.

Synthesis of an isolable silylene.

The α-amido centers stabilize silylenes by π-donation. The dehalogenation of diorganosilicon dihalides is a widely exploited.

Related reactions

Decamethylsilicocene is an example of a silylene.

In one study diphenylsilylene is generated by flash photolysis of a trisilane:

Diphenylsilylene

In this reaction diphenylsilylene is extruded from the trisila ring. The silylene can be observed with UV spectroscopy at 520 nm and is short-lived with a chemical half-life of two microseconds. Added methanol acts as a chemical trap with a second order rate constant of 1.3×10 mol s which is close to diffusion control.

See also

References

  1. IUPAC Chemical Nomenclature and Structure Representation Division (2013). "P-71.2.2.1". In Favre, Henri A.; Powell, Warren H. (eds.). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. IUPACRSC. ISBN 978-0-85404-182-4.
  2. Mizuhata, Yoshiyuki; Sasamori, Takahiro; Tokitoh, Norihiro (2009). "Stable Heavier Carbene Analogues". Chemical Reviews. 109 (8): 3479–3511. doi:10.1021/cr900093s. PMID 19630390.
  3. ^ Nagendran, Selvarajan; Roesky, Herbert W. (2008). "The Chemistry of Aluminum(I), Silicon(II), and Germanium(II)". Organometallics. 27 (4): 457–492. doi:10.1021/om7007869.
  4. Haaf, Michael; Schmedake, Thomas A.; West, Robert (2000). "Stable Silylenes". Accounts of Chemical Research. 33 (10): 704–714. doi:10.1021/ar950192g. PMID 11041835.
  5. Gaspar, Peter; West, R. (1998). "Silylenes". The Chemistry of Organic Silicon Compounds. The Chemistry of Functional Groups. Vol. 2. pp. 2463–2568. doi:10.1002/0470857250.ch43. ISBN 0471967572.
  6. Skell, P. S.; Goldstein, E. J. (1964). "Dimethylsilene: CH3SiCH3". Journal of the American Chemical Society. 86 (7): 1442–1443. doi:10.1021/ja01061a040.
  7. Denk, Michael; Lennon, Robert; Hayashi, Randy; West, Robert; Belyakov, Alexander V.; Verne, Hans P.; Haaland, Arne; Wagner, Matthias; Metzler, Nils (1994). "Synthesis and Structure of a Stable Silylene". Journal of the American Chemical Society. 116 (6): 2691–2692. doi:10.1021/ja00085a088.
  8. Driess, Matthias; Yao, Shenglai; Brym, Markus; Van Wüllen, Christoph; Lentz, Dieter (2006). "A New Type of N-Heterocyclic Silylene with Ambivalent Reactivity". Journal of the American Chemical Society. 128 (30): 9628–9629. doi:10.1021/ja062928i. PMID 16866506.
  9. Moiseev, Andrey G.; Leigh, William J. (2006). "Diphenylsilylene". Journal of the American Chemical Society. 128 (45): 14442–14443. doi:10.1021/ja0653223. PMID 17090011.
Categories:
Silylene Add topic