Misplaced Pages

Triphenylborane

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is the current revision of this page, as edited by Bernanke's Crossbow (talk | contribs) at 19:46, 10 December 2024 (Synthesis: no need for a redlink if each ion has its own page). The present address (URL) is a permanent link to this version.

Revision as of 19:46, 10 December 2024 by Bernanke's Crossbow (talk | contribs) (Synthesis: no need for a redlink if each ion has its own page)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Triphenylborane
Names
Preferred IUPAC name Triphenylborane
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.012.277 Edit this at Wikidata
EC Number
  • 213-504-2
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C18H15B/c1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18/h1-15HKey: MXSVLWZRHLXFKH-UHFFFAOYSA-N
  • InChI=1/C18H15B/c1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18/h1-15HKey: MXSVLWZRHLXFKH-UHFFFAOYAV
SMILES
  • B(c1ccccc1)(c2ccccc2)c3ccccc3
Properties
Chemical formula C18H15B
Molar mass 242.12 g/mol
Appearance White crystals
Melting point 142 °C (288 °F; 415 K)
Boiling point 203 °C (397 °F; 476 K) (15 mmHg)
Solubility in water Insoluble
Structure
Molecular shape trigonal planar
Hazards
GHS labelling:
Pictograms GHS02: Flammable
Signal word Warning
Hazard statements H228
Precautionary statements P210, P240, P241, P280, P370+P378
Related compounds
Related isoelectronic Triphenylmethyl cation
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Triphenylborane, often abbreviated to BPh3 where Ph is the phenyl group C6H
5, is a chemical compound with the formula B(C6H5)3. It is a white crystalline solid and is both air and moisture sensitive, slowly forming benzene and triphenylboroxine. It is soluble in aromatic solvents.

Structure and properties

The core of the compound, BC3, has a trigonal planar structure. The phenyl groups are rotated at about a 30° angle from the core plane.

Even though triphenylborane and tris(pentafluorophenyl)borane are structurally similar, their Lewis acidity is not. BPh3 is a weak Lewis acid while B(C6F5)3 is a strong Lewis acid due to the electronegativity of the fluorine atoms. Other boron Lewis acids include BF3 and BCl3.

Synthesis

Triphenylborane was first synthesized in 1922. It is typically made with boron trifluoride diethyl etherate and the Grignard reagent, phenylmagnesium bromide.

BF3•O(C2H5)2 + 3 C6H5MgBr → B(C6H5)3 + 3 MgBrF + (C2H5)2O

Triphenylborane can also be synthesized on a smaller scale by the thermal decomposition of trimethylammonium tetraphenylborate.

→ B(C6H5)3 + N(CH3)3 + C6H6

Applications

Triphenylborane is made commercially by a process developed by Du Pont for use in its hydrocyanation of butadiene to adiponitrile, a nylon intermediate. Du Pont produces triphenylborane by reacting sodium metal, a haloaromatic (chlorobenzene), and a secondary alkyl borate ester.

Triphenylborane can be used to make triarylborane amine complexes, such as pyridine-triphenylborane. Triarylborane amine complexes are used as catalysts for the polymerization of acrylic esters.

References

  1. Zettler, F.; Hausen, H. D.; Hess, H. (1974). "Crystal and Molecular Structure of Triphenylborane". J. Organomet. Chem. 72 (2): 157. doi:10.1016/S0022-328X(00)81488-6.
  2. Erker, G. (2005). "Tris(pentafluorophenyl)borane: a special boron Lewis acid for special reactions". Dalton Trans. (11): 1883–90. doi:10.1039/b503688g. PMID 15909033.
  3. E. Krause & R. Nitsche (1922). "Darstellung von organischen Bor-Verbindungen mit Hilfe von Borfluorid, II.: Bortriphenyl und Phenyl-borsäure". Chemische Berichte. 55 (5): 1261. doi:10.1002/cber.19220550513.
  4. R. Köster; P. Binger & W. Fenzl (1974). "Triphenylborane". Inorganic Syntheses. Vol. 15. pp. 134–136. doi:10.1002/9780470132463.ch30. ISBN 978-0-470-13246-3. {{cite book}}: |journal= ignored (help)
  5. G. Wittig; P. Raff (1951). "Über Komplexbildung mit Triphenyl-bor". Liebigs Annalen der Chemie. 573: 195. doi:10.1002/jlac.19515730118.
  6. ^ C. R. Guibert and J. L. Little, “Alkyl- and Arylboranes,” Ullmanns’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, Weinheim, 2005. doi:10.1002/14356007.a04_309
Categories: