Misplaced Pages

Atypical teratoid rhabdoid tumor

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by SandyGeorgia (talk | contribs) at 05:36, 17 April 2008 (Diagnosis: rmv faulty link). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 05:36, 17 April 2008 by SandyGeorgia (talk | contribs) (Diagnosis: rmv faulty link)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Medical condition
Atypical teratoid rhabdoid tumor
SpecialtyOncology Edit this on Wikidata

An Atypical Teratoid Rhabdoid Tumor (AT/RT) is a rare and highly malignant childhood brain tumor with a high mortality rate. In the United States, three children per 1,000,000 or around 30 new AT/RT cases are diagnosed each year. Each year there are 2,500 to 3,000 new pediatric cancers of the central nervous system (CNS) and only around 3% are diagnosed with AT/RT. Around 17% of all pediatric cancers involve the CNS; it is the most common childhood solid tumour. The survival rate for CNS tumors is around 60%; with AT/RT it is around 10%. Pediatric brain cancer is the second leading cause of childhood death, just after leukemia. Recent trends suggest that the rate of overall CNS tumor diagnosis is increasing by about 2.7% per year. As diagnostic techniques using genetic markers improve and are used more often, the proportion of AT/RT diagnoses is expected to increase.

AT/RT may be related to rhabdoid tumor, which occurs outside the CNS. Considerable debate has been focused on whether AT/RT is the same as rhabdoid tumor of the kidney (i.e., just extra-renal malignant rhabdoid tumor (MRT). The recent recognition that AT/RT and MRT both have deletions of the INI1 gene indicates that rhabdoid tumors of the kidney and brain are at least closely related. AT/RT and MRT additionally possess similar histologic, clinical, and demographic features. Moreover, 10–15% of patients with MRT have synchronous or metachronous brain tumors, many of which are secondary or primary malignant rhabdoid tumors.

A survey of 36 AT/RT patients at St. Jude Children's Hospital from 1984 to 2003 showed the survival rate for children under three is less than 10%, whereas for older children, the survival rate is potentially over 70%. Because most patients with AT/RT are less than three years old, the overall prognosis for AT/RT is very poor. Current research is focusing on using chemotherapy protocols that are effective against rhabdomyosarcoma in combination with surgery and radiation therapy.

Clinical features

Age

AT/RT is a tumor primarily of young children and infants. A study reported the average age at diagnosis to be 17 months; an American Society of Clinical Oncology (ASCO) study of the 188 documented AT/RT cases prior to 2004 showed 173 cases to be younger than fiveyears and 15 cases older than five years. Children older than three have been diagnosed with this tumor: a med-line search revealed four adults between the ages of 20 and 30 whose brain tumors have been classified as atypical/teratoid rhabdoid tumors.

Presentation

Clinical presentation depends on the locations of the tumor. Since many of the tumors occur in the posterior fossa they present like other posterior fossa tumors—headache, vomitting, lethargy, and ataxia (unsteady gait). There is a case report of a seven-month-old child with a primarily spinal tumor that presented with progressive paraplegia and abnormal feeling in the legs.

Location

The tumors can be located anywhere within the CNS including the spinal cord. Approximately 60% will be in the posterior fossa/cerebellar area. The ASCO study showed 52% posterior fossa (PF); 39% sPNET (supratentorial primitive neuroectodermal tumors); 5% pineal; 2% spinal, and 2% multi-focal.

Causes

The cause is unknown.

Genetics

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (Learn how and when to remove this message)

Genetic similarities have been found within rhabdoid tumors. In particular the chromosomal 22 deletion is very common in AT/RTs. The chromosome 22 area contains the hSNF5/INI1 gene that appears to function as a classic tumor suppressor gene. Most rhabdoid tumors have INI1 deletions whether they occur in the CNS, kidney or elsewhere. This mutation is viewed as the "first hit" which predisposes children to malignancies. INI1/hSNF5, a component of the chromatin remodeling SWI/SNF complex, is a critical tumor suppressor biallelically inactivated in rhabdoid tumors. Identification of INI1 as a tumor suppressor has facilitated accurate diagnosis of rhabdoid tumors.

The rate of transcription for SWI/SNF and HDAC complexes seem to be regulated by the INI1 gene. The SWI/SNF complex plays a role in chromatin remodeling. AT/RT is the first pediatric brain tumor for which a candidate tumor suppressor gene has been identified. A mutation or deletion in the INI1/hSNF5 gene occurs in the majority of AT/RT tumors. Up to 90% of AT/RT cases involve 22 deletion. This is mainly point mutations on the hSNF5/INI1 gene (i.e., one can diagnosis AT/RT without a chromsome 22 deletion elsewhere). The hSNF5/INI1 gene regulates 15 or so proteins in the chromintin structure. In addition, the OPN gene has a higher expression in AT/RT tumors. It is increasingly believed that the reason that 100% of the AT/RT cancers are not associated with the hSNF5/INI1 gene is that there are 14 additional proteins in the chromintin structure that are controlled by other genes. There are also some emerging mouse models of the AT/RT cancer as well as experimental cell lines derived from tumors. Despite these advances, the function of the gene is not yet understood. There is not enough known about the function of INI1, either as an independent modulator of gene expression or through its association with the SWI/SNF complex, to be able to use specific targeted biological agents for treatment. Prospective clinical and biologic trials are greatly needed to understand the efficacy of therapeutic interventions, as well as the role of the gene.

Risk for siblings and other members of the family

Atypical teratoid rhabdoid tumors are very rare tumors and absolute risk to siblings is not reported in the literature. However, there have been some reports of AT/RTs presenting in two members of the same family, or one family member with a AT/RT and another with a renal rhabdoid tumor or other CNS tumor. These are thought to arise from germ-line genetic mutations.

  • A study identified a three-generation family in which two half-brothers were diagnosed with central nervous system atypical teratoid/rhabdoid tumors (AT/RT). The two boys, diagnosed at 2 months and 17 months of age, had a germline insertion mutation in exon 4 of the INI1 gene that was inherited from their healthy mother. A maternal uncle died in childhood from a brain tumor and a malignant rhabdoid tumor of the kidney. The identification of two unaffected carriers in a family segregating a germline mutation and rhabdoid tumor supports the hypothesis that there may be variable risks of development of rhabdoid tumor in the context of a germline mutation. There may be a developmental window in which most rhabdoid tumors occur. This family highlights the importance of mutation analysis in all patients with a suspected rhabdoid tumor.
  • In the first case report of monozygotic twins, both with brain tumors having similar genetic alterations of both tumors, authors suggest a common genetic pathway.
  • A case reported on an infant that developed both AT/RT and renal rhabdoid tumors that were identical in histoligic and immunophenotypic features.
  • A family has had multiple generations of posterior fossa tumors including rhabdoid tumors and choroid plexus carcinoma. There seemed to be a germ-line mutation (SMARCB1) seen in both affected and some unaffected family members.
  • Two sisters were diagnosed with AT/RTs fifteen days apart. A case report stated there were no karyotypic anomalies noted.
  • Three siblings had a mutation of the SMARCB1 gene and one had a plexus carcinoma and two had a AT/RT. Although the mother had a normal DNA it appears that the mutation was inherited from the mother due to a mutation during oogenesis.

Pathology

AT/RT and rhabdoid tumor share the term "rhabdoid" because under a microscope both tumors resemble rhabdomyosarcoma.

Histology

The tumor histology is jumbled small and large cells. The tissue of this tumor contains many different types of cells including the rhabdoid cells, large spindled cell, epithelial and mesencymal cells and areas resembling primitive neuroectodermal tumor (PNET). As much as 70% of the tumor may be made up of PNET-like cells. Ultrastructure characteristic whorls of intermediate filaments in the rhabdoid tumors (as with rhabdoid tumors in any area of the body). Ho and associates found sickle shaped embracing cells, previously unreported, in all of 11 cases of AT/RT.

Immunohistochemistry

Immunohistochemistry refers to the process of localizing proteins in cells of a tissue section exploiting the principle of antibodies binding specifically to antigens in biological tissues. A tissue sample is stained to identify specific cellular proteins. Immunohistochemical staining is widely used in the diagnosis and treatment of cancer. Specific molecular markers are characteristic of particular cancer types. Immunohistochemistry is also widely used in basic research to understand the distribution and localization of biomarkers in different parts of a tissue. Proteins found in an Atypical Teratoid Rhaboid Tumor are:

Cytogenetic studies

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (Learn how and when to remove this message)

Cytogenetics is the study of a tumor’s genetic make-up. A technique called fluorescent in situ hybridization (FISH) may be able to help locate a mutation or abnormality that may be allowing tumor growth. This technique has been shown to be useful in identifying some tumors and distinguishing two histologically similar tumors from each other (such as AT/RTs and PNETs). In particular, medulloblastmas/PNETs may possibly be differentiated cytogenetically from AT/RTs as chromosomal deletions of 17p are relatively common with medulloblastoma and abnormalities of 22q11.2 are not seen. On the other hand, chromosomal 22 deletions are very comomon in AT/RTs.

In importance of the hSNF5/INI1 gene located on chromosomal band 22q11.2 is highlighted in the summary paper form the Workshop on Childhood Atypical Teratoid Rhabdoid Tumors as the mutation’s presence is sufficient to change the diagnosis from a medulloblastoma or PNET to the more aggressive AT/RT classification. However, it should be noted that this mutation is not present in 100% of cases. Therefore, if the mutation is not present in an otherwise classic AT/RT immunohistochemical and morphologic pattern then the diagnosis remains an AT/RT.

Diagnosis

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (Learn how and when to remove this message)

The standard work-up for AT/RT includes:

The initial diagnosis of a tumor is made with a radiographic study (MRI or CT-). If CT was performed first, a MRI is usually performed as the images are often more detailed and may reveal previously undetected metastatic tumors in other locations of the brain. In addition, a MRI of the spine is usually performed. The AT/RT tumor often spreads to the spine. It is difficult to diagnosis AT/RT only from radiographic study; usually a pathologist must perform a cytological or genetic analysis.

Examination of the cerebral spinal fluid is important as one-third of patients will have intracranial dissemination with involvement of the cerebral spinal fluid(CSF). Large tumor cells, eccentricity of the nuclei and prominent nucleoli are consistent findings. Usually only a minority of AT/RT biopsies have Rhabdoid cells, making diagnosis more difficult. Increasingly it is recommended that a genetic analysis be performed on the brain tumor, especially to find if a deletion in the INI1/hSNF5 gene is involved (appears to account for over 80% of the cases). The correct diagnosis of the tumour is critical to any protocol. Studies have shown that 8% to over 50% of AT/RT tumors are diagnosed incorrectly.

Differential diagnosis

The critical step in treatment planning is to determine the correct histology of the tumor. An atypical teratoid rhaboid tumor can be mistaken for a medulloblastoma, primitive neuroectodermal tumor (PNET), choroid plexus carcinoma or germ cell tumor. An atypical teratoid rhabdoid tumor may in some sections resemble other CNS neoplasms, because rhabdoid characteristics are not the sole component of these tumors. The rhabdoid aspect may be located only in focal areas or may be less pronounced.

It is important to consider AT/RT when a medulloblastoma or PNET is suspected, particularly in a child under the age of one. Cytogenetic studies can assist in differentiating MB/PNETs from AT/RTs. Some kinds of germ cell tumor secrete tumor markers AFP or bHCG; AT/RTs do not.

Misclassification of the tumor's pathology can lead to errors in treatment and prognosis.

Compared to medulloblastoma, AT/RT has a significantly worse prognosis. AT/RT occurs in young children (often younger than three years) who are difficult to evaluate, it is resistant to many current therapies, and its recurrence is fast.

Appearance on radiologic exam

AT/RTs can occur at any sites within the CNS, however approximately 60% are located in the posterior fossa area/Cerebellum area. The ASCO study showed 52% posterior fossa (PF); 39% sPNET (supratentorial primitive neuroectodermal tumors); 5% pineal; 2% spinal, and 2% multi-focal.

The tumors' appearance on CT and MRI are nonspecific tending towards large size, calcifications, necrosis (tissue death),and hemorrhage (bleeding). Radiological studies alone cannot identify AT/RT; a pathologist almost always has to evaluate a brain tissue sample.

The increased cellularity of the tumor may make the appearance on an uncontrasted CT to have increased attenuation. Solid parts of the tumor often enhance with contrast MRI Finding on T1 and T2 weighted images are variable. Pre-contrast T2 weighted images may show an iso-signal or slightly hyper-signal. Solid components of the tumor may enhance with contrast but do not always. MRI studies appear to be more able to pick up metastatic foci in other intracranial locations as well as intraspinal locations.

Preoperative and followup studies are needed to detect metastatic disease.

Treatment

Surgical option

Surgery plays a critical role in obtaining tissue to make an accurate diagnosis. Surgery alone is not curative. In addition, 30% of the AT/RT tumors are located supratentorially and there is a predilection for the cerebello-pontine angle which makes surgical resection difficult. One-third or more children will have disseminated disease at the time of diagnosis. Total or near-total resections are often not possible.

Chemotherapy options

Approximately 50% of the AT/RT tumors will transiently respond. Chemotherapy by itself is rarely curative. There is no standard treatment for AT/RT. Various chemotherapeutic agents have been used against AT/RTs which are also used against other CNS tumors including cisplatinum, carboplatinum, cyclophosphamide, vincristine and eptoposide. Some Chemotherapy protocols are listed below:

  • CCG clinical trial CCG-9921 was activated in 1993 and published its results in 2005. The proposed treatments did not have different outcomes and were not an improvement on prior treatments. Geyer published a review of chemotherapy on 299 infants with CNS tumors that evaluated response rate, event-free survival (EFS), and toxicity of two chemotherapeutic regimens for treatment of children younger than 36 months with malignant brain tumors. Patients were randomly assigned to one of two regimens of induction chemotherapy (vincristine, cisplatin, cyclophosphamide, and etoposide v vincristine, carboplatin, ifosfamide, and etoposide). Intensified induction chemotherapy resulted in a high response rate of malignant brain tumors in infants. Survival was comparable to that of previous studies, and most patients who survived did not receive radiation therapy.
  • Sarcoma protocols. There has been at least one report in the literature of malignant rhabdoid tumors of the CNS being treated in as a high-grade intracranial sarcoma. These three cases were treated with surgery, chemotherapy, radiotherapy and triple intrathecal chemotherapy similar to the Intergroup Rhadbdomyoscarcoma Study III guidelines.
  • Intrathecal protocols. One of the difficulties with brain and spinal tumors is that the blood brain barrier needs to be crossed so that the drug can get to the tumor. One mechanism to deliver the drug is through a device called an Ommaya reservoir. This is a device which shares some similarities to a shunt in which a tube a surgically placed in the fluid surrounding the brain and a bulb shaped reservoir attached to the tubing is placed under the skin of the scalp. When the child is to receive intrathecal chemotherapy, the drug is administered into this bulb reservoir. At other times intrathecal chemotherapeutic agents are delivered through a lumbar puncture (spinal tap). A current Pediatric Brain Tumor Consortium Protocol uses intrathecal mafosfamide, a pre-activated cyclophosphamidederivative, in addition to other modalities to try to effect this tumor.
  • High dose chemotherapy with stem cell rescue. This therapy uses chemotherapy at doses high enough to completely suppress the bone marrow. Prior to instituting this therapy, the child has a central line placed and stem cells are gathered. After therapy these cells are given back to the child to regrow the bone marrow. Stem cell rescue or autologous bone marrow transplantation, was initially thought to be of benefit to a wide group of patients, but has declined over the history of chemotherapy protocols. A general description of stem cell rescue is available. In addition, there are some reports that it is effective with select cancers and this includes AT/RT.

Radiation options

The traditional dogma for childhood brain tumors has been to use chemotherapy to defer radiation therapy until a child is older than three years. This strategy is based upon observations that children under three have significant long term complications as a result of brain irradiation. However, the long term outcomes of AT/RT are so poor that protocols call for for upfront radiation therapy, often in spite of young age.

The dose and volume of radiation had not been standardized, however, radiation does appear to improve survival. The use of radiation has been limited in children younger than three because of the risk of severe neurocognitive deficits. There are protocols using conformal, local radiation in the young child to try to cure this tumor.

External beam (conformal) radiation uses several fields that beam intersects at the tumor location; the normal brain tissue receives less radiation and hopefully is at less impact on cognitive function.

Proton beam radiation was only offered at Massachusetts General Hospital in Boston and at Loma Linda, California as of 2002. Since 2003 three or four more proton therapy centers have opened in the United States.

Chromatin re-modeling agents

This protocol is still in pre-clinical evaluation. HDAC inhibitors are a new class of anticancer agents targeted directly at chromatin remodeling. These agents have been used in acute promyelocytic leukemia and have been found to affect the HDAC-mediated transcriptional repression. There is too little understanding of the INI1 deficiency to predict whether HDAC inhibitors will be effective against AT/RTs. There are some laboratory results that indicate it is effective against certain AT/RT cell lines.

Prognosis

The prognosis for AT/RT is very poor, although there are some indications that an IRSIII-based therapy can produce long-term survival (60 to 72 months). Two-year survival is less than 20%, average survival postoperatively is 11 months, and doctors recommend palliative care, especially with younger children because of the poor outcomes.

Patients with metastasis (disseminated tumor), larger tumors, tumors that could not be fully removed, tumor reoccurance, and were younger than 36 months had the worse outcomes (i.e., shorter survival times).

A retrospective survey from 36 AT/RT St. Jude Children's Hospital patients from 1984 to 2004 found a less than 10% survival rate in children under three, but a 70% survival rate in older children. A retrospective register at the Cleveland Children's hospital on 42 AT/RT patients found median survival time is 16.25 months and a survival rate around 33%. One-quarter of these cases did not show the mutation in the INI1/hSNF5 gene.

The longest term survivals reported in the literature are:

  • (a) Hilden and associates reported a child who was still free from disease at 46 months from diagnosis.
  • (b) Olson and associates reported a child who was disease free at five years from diagnosis based on the IRS III protocol.
  • (c) In 2003 Hirth reported a case who had been disease free for over six years.
  • (d) Zimmerman in 2005 reported 50-to-72 month survival rates on four patients using an IRS III-based protocol. Two of these LT survivors had been treated after an AT/RT reoccurance.
  • (e) A NYU study (Gardner 2004) has 4 of 12 longer term AT/RT survivors; the oldest was alive at 46 months after diagnosis.
  • (f) Aurélie Fabre, 2004, reported a 16-year survivor of a soft-tissue rhabdoid tumor.

Cancer treatments in long-term survivors who are children usually cause a series of negative effects on physical well being, fertility, cognition, and learning.

Metastasis

Metastatic spread is noted in approximately one-third of the AT/RT cases at the time of diagnosis and tumors can occur anywhere throughout the CNS. The ASCO study of the 188 documented AT/RT cases prior to 2004 found 30% of the cases had metastasis at diagnosis. Metastatic spread to the Meninges (leptomenigeal spread sometimes referred to as sugar coating) is common both initially and with relapse. Average survival times decline when there is metastasis. Primary CNS tumors metastasize only within the CNS.

One case of metastatic disease to the abdomen via ventriculoperitoneal shunt has been reported with AT/RT . Metastatic dissemination via this mechanism has been reported with other brain tumors including germinomas, medulloblastomas, astrocytomas, glioblastomas, endymomas and endodermal sinus tumors. Guler and Sugita separately reported cases of lung metastasis without a shunt.

Epidemiology

An estimated 3% of pediatric brain tumors are AT/RTs although this percentage may increase with better differentiation between PNET/medulloblastoma tumors and AT/RTs.

As with other CNS tumors, slightly more males are affected than females (ratio 1.6:1). The ASCO study showed a 1.4:1 male to female ratio.

History

AT/RT of the central nervous system (CNS) was first described in 1987 Rorke and her associates at the Children’s Hospital of Philadelphia. Early subsequent reports called this kind of CNS tumor either atypical teratoid rhaboid tumor or malignant rhabdoid tumor (MRT) of the CNS. Between 1978 and 1987, AT/RT likely was misdiagnosed as rhabdoid tumor. Before 1978, when rhabdoid tumor was described, AT/RT likely was misdiagnosed as medulloblastoma. Before 1978, when rhabdoid tumor was described, AT/RT likely was misdiagnosed as medulloblastoma. However, both AT/RT and non-CNS MRT have a worse prognosis and are resistant to the standard treatment protocols for medulloblastoma.

By 1995, AT/RT had become regarded as a newly defined aggressive, biologically unique class of primarily brain and spinal tumors, primarily affecting infants and young children. In January 2001, the U.S. National Cancer Institute and Office of Rare Diseases hosted a Workshop on Childhood Atypical Teratoid/Rhabdoid Tumors of the Central Nervous System. Twenty-two participants from 14 institutions came together to discuss the biology, treatments and new strategies for these tumors. The consensus paper on the biology of the tumor was published in Clinical Research. The workshop's recognition that CNS atypical teratoid/rhabdoid tumors (AT/RT) have deletions of the INI1 gene indicates that rhabdoid tumors of the kidney and brain are identical or closely related entities. This observation is not surprising because rhabdoid tumors at both locations possess similar histologic, clinical, and demographic features.

Research directions

Atypical teratoid rhabdoid tumor is rare and no therapy has been proven to deliver long term survival, nor is there a set of standard protocols. Thus, most children with AT/RT are enrolled in clinical trials to try to find an effective cure. A clinical trial is not a treatment standard; it is research. Some clinical trials compare an experimental treatment to a standard treatment, but only if there exists a standard treatment.

  • Head Start Chemotherapy Protocol. This chemotherapy protocol is for children <10 years old with newly diagnosed high grade primary brain tumors with intent to eliminate irradiation and shorten the treatment time to 6 months. The therapy consists of 3-5 cycles of intensive chemotherapy followed by a single myeloblative chemotherapy with stem cell rescue. Dr. Jonathan Finlay of New York University Medical Center is the contact person although run at a few hospitals in the county (contact information is listed on the site).

References

  1. Measure D6: Types of Childhood Cancer – 2006 Tables D6a & D6b. U.S. Environmental Protection Agency. Retrieved on 2008-04-17.
  2. Tekautz TM, Fuller CE, Blaney S; et al. (2005). "Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy". J. Clin. Oncol. 23 (7): 1491–9. doi:10.1200/JCO.2005.05.187. PMID 15735125. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link) See Figure 1.
  3. ^ Kieran MW (2006). "An Update on Germ Cell Tumors, Atypical Teratoid/Rhaboid Tumors, and Choroid Plexus Tumors Rare Tumors 3: Brain Tumors---Germ Cell Tumors, Atypical Teratoid/Rhabdoid Tumors, and Choroid Plexus Tumors". American Society of Clinical Oncology. Education Book. Retrieved 2007-05-20.
  4. Ashraf R, Bentley RC, Awan AN, McLendon RE, Ragozzino MW (1997). "Implantation metastasis of primary malignant rhabdoid tumor of the brain in an adult (one case report)". Med. Pediatr. Oncol. 28 (3): 223–7. PMID 9024522.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Arrazola J, Pedrosa I, Méndez R, Saldaña C, Scheithauer BW, Martínez A (2000). "Primary malignant rhabdoid tumour of the brain in an adult". Neuroradiology. 42 (5): 363–7. PMID 10872158.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Lutterbach J, Liegibel J, Koch D, Madlinger A, Frommhold H, Pagenstecher A (2001). "Atypical teratoid/rhabdoid tumors in adult patients: case report and review of the literature" (PDF). J. Neurooncol. 52 (1): 49–56. PMID 11451202.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Sugita Y, Takahashi Y, Hayashi I, Morimatsu M, Okamoto K, Shigemori M (1999). "Pineal malignant rhabdoid tumor with chondroid formation in an adult". Pathol. Int. 49 (12): 1114–8. PMID 10632935.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Tamiya T, Nakashima H, Ono Y; et al. (2000). "Spinal atypical teratoid/rhabdoid tumor in an infant". Pediatr Neurosurg. 32 (3): 145–9. PMID 10867562. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  9. Janson K, Nedzi LA, David O; et al. (2006). "Predisposition to atypical teratoid/rhabdoid tumor due to an inherited INI1 mutation". Pediatr Blood Cancer. 47 (3): 279–84. doi:10.1002/pbc.20622. PMID 16261613. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  10. Fernandez C, Bouvier C, Sevent N. (2002). "Congenital disseminated malignant rhabdoid tumor and cerebellar tumor mimicking medulloblastoma in monozygotic twins: pathologic and molecular diagnosis". Am J Surg Pathol (26:): 266–70. PMID 11812951.{{cite journal}}: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link)
  11. Beigel, JA, Fogelgren B, Wainwright LM; et al. (2000). "Germ-line INI1 mutations in a patient with a central nervous system atypical teratoid tumor and renal rhabdoid tumor". Genes Chromosomes Cancer (1): 31–7. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  12. Taylor MD, Gokgoz N, Andrulis IL, Mainprize TG, Drake JM, Rutka JT (2000). "Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene". Am. J. Hum. Genet. 66 (4): 1403–6. doi:10.1086/302833. PMID 10739763.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Proust F, Laquerriere A, Constantin B, Ruchoux MM, Vannier JP, Fréger P (1999). "Simultaneous presentation of atypical teratoid/rhabdoid tumor in siblings" (PDF). J. Neurooncol. 43 (1): 63–70. PMID 10448873.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. Sevent N, Sheridan E, Amran D; et al. (1999). "Constituitonal mutations of the hSNF/INI1 gene predispose to a variety of cancers". Am J Hum Genet (65): 1343–48. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  15. CD99
  16. 2nd CD99 link
  17. Lu L, Wilkinson EJ, Yachnis AT (2000). "CSF cytology of atypical teratoid/rhabdoid tumor of the brain in a two-year-old girl: a case report". Diagn. Cytopathol. 23 (5): 329–32. PMID 11074628.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Burger PC, Yu IT, Tihan T; et al. (1998). "Atypical teratoid/rhabdoid tumor of the central nervous system: a highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma: a Pediatric Oncology Group study". Am. J. Surg. Pathol. 22 (9): 1083–92. PMID 9737241. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  19. Jay V, Edwards V, Halliday W, Rutka J, Lau R (1997). ""Polyphenotypic" tumors in the central nervous system: problems in nosology and classification". Pediatr Pathol Lab Med. 17 (3): 369–89. PMID 9185218.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. [http://www.utmb.edu/otoref/Grnds/Mass-CPA-040602/Mass-CPA-slides-040602.pdf PDF
  21. ^ Geyer JR, Sposto R, Jennings M; et al. (2005). "Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children's Cancer Group". J. Clin. Oncol. 23 (30): 7621–31. doi:10.1200/JCO.2005.09.095. PMID 16234523. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  22. "Childhood Rhabdomyosarcoma Treatment". National Cancer Institute. Retrieved 2007-07-09.
  23. Poussaint TY, Phillips PC, Vajapeyam S; et al. (2007). "The Neuroimaging Center of the Pediatric Brain Tumor Consortium-collaborative neuroimaging in pediatric brain tumor research: a work in progress". AJNR. American journal of neuroradiology. 28 (4): 603–7. PMID 17416804. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  24. "Stem cell and bone marrow transplants". Cancerbackup. Retrieved 2007-07-09.
  25. "High-Dose Chemotherapy with Hematopoietic Stem-Cell Rescue for Multiple Myeloma". NEJM. Retrieved 2007-07-09.
  26. Squire SE, Chan MD, Marcus KJ (2007). "Atypical teratoid/rhabdoid tumor: the controversy behind radiation therapy". J. Neurooncol. 81 (1): 97–111. doi:10.1007/s11060-006-9196-z. PMID 16855864.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. Principles of Proton Beam Therapy
  28. Proton Beam RadioTheraphy at Mass. General
  29. Proton Beam Therapy Article
  30. Proton Beam Therapy - BJC Abstract
  31. Loma Linda Medical Center Proton Treatment Center - Overview
  32. Loma Linda overview of Childhood Brain Tumors
  33. Zhang ZK, Davies KP, Allen J; et al. (2002). "Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5". Mol. Cell. Biol. 22 (16): 5975–88. PMID 12138206. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  34. "Atypical Teratoid / Rhabdoid Tumor (ATRT)". St Jude's Hospital. Retrieved 2007-07-10.
  35. Hilden JM, Meerbaum S, Burger P; et al. (2004). "Central nervous system atypical teratoid/rhabdoid tumor: results of therapy in children enrolled in a registry". J. Clin. Oncol. 22 (14): 2877–84. doi:10.1200/JCO.2004.07.073. PMID 15254056. Retrieved 2007-05-23. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  36. Olson TA, Bayar E, Kosnic E (1995). "Successful treatment of disseminated central nervous system malignant rhabdoid tumors". J Pediatr Hematol Oncol. 17: 71–75. PMID 7743242.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. Hirth A, Pedersen P-H, Wester K; et al. (2003). "Cerebral Atypical Teratoid/Rhabdoid Tumor of Infancy: Long-Term Survival after Multimodal Treatment, also Including Triple Intrathecal Chemotherapy and Gamma Knife Radiosurgery--Case Report (Abstract)". Pediatric Hematology and Oncology 2003. 20 (4): 327–332. doi:10.1080/713842315. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  38. Zimmerman MA, Goumnerova LC, Proctor M; et al. (2005). "Continuous remission of newly diagnosed and relapsed central nervous system atypical teratoid/rhabdoid tumor". J. Neurooncol. 72 (1): 77–84. doi:10.1007/s11060-004-3115-y. PMID 15803379. Retrieved 2007-05-20. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  39. Gardner S, Diez B, Green A; et al. (June 13–16). "THER 27. INTENSIVE INDUCTION CHEMOTHERAPY FOLLOWED BY HIGH-DOSE CHEMOTHERAPY WITH AUTOLOGOUS STEM CELL RESCUE (ASCR) IN YOUNG CHILDREN NEWLY DIAGNOSED WITH CENTRAL NERVOUS SYSTEM (CNS) ATYPICAL TERATOID RHABDOID TUMORS (ATT/RT)—THE "HEAD START" REGIMENS" (PDF). Abstracts from the Eleventh International Symposium on Pediatric Neuro-Oncology. Retrieved 2007-06-03. {{cite journal}}: Check date values in: |date= and |year= / |date= mismatch (help); Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  40. Fabre A, Eyden B, Ali HH (January 2004). "Soft-Tissue Extrarenal Rhabdoid Tumor with a Unique Long-Term Survival". Ultrastructural Pathology. 28 (1): 49–52. doi:10.1080/01913120490275259. Retrieved 2007-05-28.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  41. Fouladi M, Gilger E, Kocak M; et al. (October 1, 2005). "Intellectual and Functional Outcome of Children 3 Years Old or Younger Who Have CNS Malignancies". Journal of Clinical Oncology. 23 (28): 7152–60. doi:10.1200/JCO.2005.01.214. {{cite journal}}: Check date values in: |date= (help); Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  42. Monteleone P, Meadows AT (June 6, 2006). "Late Effects of Childhood Cancer and Treatment". eMedicine from WebMD. {{cite journal}}: Check date values in: |date= (help)CS1 maint: date and year (link)
  43. Foreman NK, Faestel PM, Pearson J; et al. (January 1999). "Health Status in 52 Long-term Survivors of Pediatric Brain Tumors". Journal of Neuro-Oncology. 41 (1): 47–52. doi:10.1023/A:1006145724500. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  44. Meyers EA, Kieran MW (2002). "Brief Report Psychological adjustment of surgery-only pediatric neuro-oncology patients: a retrospective analysis". Psycho-Oncology. 11 (1). John Wiley & Sons, Ltd.: 74–79. doi:10.1002/pon.553.
  45. Güler E, Varan A, Söylemezoglu F; et al. (2001). "Extraneural metastasis in a child with atypical teratoid rhabdoid tumor of the central nervous system" (PDF). J. Neurooncol. 54 (1): 53–6. PMID 11763423. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  46. Sugita Y, Takahashi Y, Hayashi I, Morimatsu M, Okamoto K, Shigemori M (1999). "Pineal malignant rhabdoid tumor with chondroid formation in an adult". Pathol. Int. 49 (12): 1114–8. PMID 10632935.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. Rorke LB, Packer RJ, Biegel JA (1996). "Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity". J. Neurosurg. 85 (1): 56–65. PMID 8683283.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. Rorke LB, Packer R, Biegel J (1995). "Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood". J. Neurooncol. 24 (1): 21–8. PMID 8523069.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. Biegel JA, Kalpana G, Knudsen ES; et al. (2002). "The role of INI1 and the SWI/SNF complex in the development of rhabdoid tumors: meeting summary from the workshop on childhood atypical teratoid/rhabdoid tumors". Cancer Res. 62 (1): 323–8. PMID 11782395. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)

External links

Tumours of the nervous system
Endocrine
Sellar:
Other:
CNS
Neuroepithelial
(brain tumors,
spinal tumors)
Glioma
Astrocyte
Oligodendrocyte
Ependyma
Choroid plexus
Multiple/unknown
Mature
neuron
CNS embryonal tumors
Meninges
Hematopoietic
PNS:
Other
Note: Not all brain tumors are of nervous tissue, and not all nervous tissue tumors are in the brain (see brain metastasis).
Categories: