Misplaced Pages

Menthol

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Beetstra (talk | contribs) at 22:00, 5 August 2011 (Script assisted update of identifiers for the Chem/Drugbox validation project (updated: 'DrugBank').). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 22:00, 5 August 2011 by Beetstra (talk | contribs) (Script assisted update of identifiers for the Chem/Drugbox validation project (updated: 'DrugBank').)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Not to be confused with methanol.
Menthol
(-)-Menthol
(-)-Menthol
Ball-and-stick model of (-)-menthol
Ball-and-stick model of (-)-menthol
Names
IUPAC name (1R,2S,5R)-2-isopropyl-5-methylcyclohexanol
Other names 3-p-Menthanol,
Hexahydrothymol,
Menthomenthol,
peppermint camphor
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.016.992 Edit this at Wikidata
RTECS number
  • OT0350000, racemic
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C10H20O/c1-7(2)9-5-4-8(3)6-10(9)11/h7-11H,4-6H2,1-3H3/t8-,9+,10-/m1/s1Key: NOOLISFMXDJSKH-KXUCPTDWSA-N
  • InChI=1S/C10H20O/c1-7(2)9-5-4-8(3)6-10(9)11/h7-11H,4-6H2,1-3H3/t8-,9+,10-/m1/s1
  • Key: NOOLISFMXDJSKH-KXUCPTDWSA-N
SMILES
  • O1(C(C)C)CC(C)C1
  • O1(C(C)C)CC(C)C1
Properties
Chemical formula C10H20O
Molar mass 156.27 g·mol
Appearance White or colorless
crystalline solid
Density 0.890 g·cm, solid
(racemic or (−)-isomer)
Melting point 36–38 °C (311 K), racemic
42–45 °C (318 K), (−)-form (α)
35-33-31 °C, (−)-isomer
Boiling point 212 °C (485 K)
Solubility in water Slightly soluble, (−)-isomer
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Irritant, flammable
Flash point 93 °C
Related compounds
Supplementary data page
Menthol (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Menthol is an organic compound made synthetically or obtained from peppermint or other mint oils. It is a waxy, crystalline substance, clear or white in color, which is solid at room temperature and melts slightly above. The main form of menthol occurring in nature is (−)-menthol, which is assigned the (1R,2S,5R) configuration. Menthol has local anesthetic and counterirritant qualities, and it is widely used to relieve minor throat irritation. Menthol also acts as a weak kappa Opioid receptor agonist.

Structure

Natural menthol exists as one pure stereoisomer, nearly always the (1R,2S,5R) form (bottom left corner of the diagram below). The eight possible stereoisomers are:

Structures of menthol isomers

In the natural compound, the isopropyl group is in the trans orientation to both the methyl and hydroxyl groups. Thus it can be drawn in any of the ways shown:

Menthol chair conformation Ball-and-stick 3D model highlighting menthol's chair conformation

The (+) and (–) enantiomers of menthol are the most stable among these based on their cyclohexane conformations. With the ring itself in a chair conformation, all three bulky groups can orient in equatorial positions.

There are two crystal forms for racemic menthol; these have melting points of 28 °C and 38 °C. Pure (−)-menthol has four crystal forms, of which the most stable is the α form, the familiar broad needles.

Biological properties

Menthol's ability to chemically trigger the cold-sensitive TRPM8 receptors in the skin is responsible for the well known cooling sensation that it provokes when inhaled, eaten, or applied to the skin. In this sense it is similar to capsaicin, the chemical responsible for the spiciness of hot peppers (which stimulates heat sensors, also without causing an actual change in temperature).

Menthol has analgesic properties that are mediated through a selective activation of κ-opioid receptors. Menthol also enhances the efficacy of ibuprofen in topical applications via vasodilation, which reduces skin barrier function.

Occurrence

Mentha arvensis is the primary species of mint used to make natural menthol crystals and natural menthol flakes. This species is primarily grown in the Uttar Pradesh region in India.

(−)-Menthol (also called l-menthol or (1R,2S,5R)-menthol) occurs naturally in peppermint oil (along with a little menthone, the ester menthyl acetate and other compounds), obtained from Mentha x piperita. Japanese menthol also contains a small percentage of the 1-epimer, (+)-neomenthol.

Biosynthesis of menthol was investigated in M. x piperita, and all enzymes involved in its biosynthesis have been identified and characterized.

Production

As with many widely-used natural products, the demand for menthol greatly exceeds the supply from natural sources. Menthol is manufactured as a single enantiomer (94% ee) on the scale of 3,000 tons per year by Takasago International Corporation. The process involves an asymmetric synthesis developed by a team led by Ryōji Noyori:

MyrceneDiethylamineCitronellalZinc bromide

The process begins by forming an allylic amine from myrcene, which undergoes asymmetric isomerisation in the presence of a BINAP rhodium complex to give (after hydrolysis) enantiomerically pure R-citronellal. This is cyclised by a carbonyl-ene-reaction initiated by zinc bromide to isopulegol which is then hydrogenated to give pure (1R,2S,5R)-menthol.

Racemic menthol can be prepared simply by hydrogenation of thymol, and menthol is also formed by hydrogenation of pulegone.

Applications

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2009) (Learn how and when to remove this message)

Menthol is included in many products for a variety of reasons. These include:

  • In non-prescription products for short-term relief of minor sore throat and minor mouth or throat irritation
  • As an antipruritic to reduce itching
  • As a topical analgesic to relieve minor aches and pains such as muscle cramps, sprains, headaches and similar conditions, alone or combined with chemicals like camphor, eucalyptus oil or capsaicin. In Europe it tends to appear as a gel or a cream, while in the US patches and body sleeves are very frequently used
  • In decongestants for chest and sinuses (cream, patch or nose inhaler)
  • In certain medications used to treat sunburns, as it provides a cooling sensation (then often associated with aloe)
  • As an additive in certain cigarette brands, for flavor, to reduce the throat and sinus irritation caused by smoking.
  • Commonly used in oral hygiene products and bad-breath remedies like mouthwash, toothpaste, mouth and tongue-spray, and more generally as a food flavor agent; e.g. in chewing gum, candy
  • In a soda to be mixed with water to obtain a very low alcohol drink or pure (brand Ricqlès which contains 80% alcohol in France). The alcohol is also used to alleviate nausea, in particular motion sickness, by pouring a few drops on a lump of sugar.
  • As a pesticide against tracheal mites of honey bees
  • In perfumery, menthol is used to prepare menthyl esters to emphasize floral notes (especially rose)
  • In first aid products such as "mineral ice" to produce a cooling effect as a substitute for real ice in the absence of water or electricity (Pouch, Body patch/sleeve or cream)
  • In various patches ranging from fever-reducing patches applied to children's foreheads to "foot patches" to relieve numerous ailments (the latter being much more frequent and elaborate in Asia, especially Japan: some varieties use "functional protrusions", or small bumps to massage ones feet as well as soothing them and cooling them down)
  • In some beauty products such as hair-conditioners, based on natural ingredients (e.g. St. Ives)
  • As an antispasmodic and smooth muscle relaxant in upper gastrointestinal endoscopy.

In organic chemistry, menthol is used as a chiral auxiliary in asymmetric synthesis. For example, sulfinate esters made from sulfinyl chlorides and menthol can be used to make enantiomerically pure sulfoxides by reaction with organolithium reagents or Grignard reagents. Menthol reacts with chiral carboxylic acids to give diastereomic menthyl esters, which are useful for chiral resolution.

Reactions

Menthol reacts in many ways like a normal secondary alcohol. It is oxidised to menthone by oxidising agents such as chromic acid or dichromate, though under some conditions the oxidation can go further and break open the ring. Menthol is easily dehydrated to give mainly 3-menthene, by the action of 2% sulfuric acid. PCl5 gives menthyl chloride.

Reactions of menthol

History

There is evidence that menthol has been known in Japan for more than 2000 years, but in the West it was not isolated until 1771, by Hieronymus David Gaubius. Early characterizations were done by Oppenheim, Beckett, Moriya, and Atkinson.

Compendial status

This section needs expansion. You can help by adding to it. (June 2009)

Toxicology and MSDS data

This section needs expansion. You can help by adding to it. (June 2009)

Currently no reported nutrient or herb interactions involve menthol. (−)-Menthol has low toxicity: Oral (rat) LD50: 3300 mg/kg; Skin (rabbit) LD50: 15800 mg/kg.

Notes and references

  1. R. Eccles (1994). "Menthol and Related Cooling Compounds". J. Pharm. Pharmacol. 46 (8): 618–630. PMID 7529306.
  2. Galeottia, N., Mannellia, L.D.C., Mazzantib, G., Bartolinia, A., Ghelardini, C. (2002). "Menthol: a natural analgesic compound". Neuroscience Letters. 322 (3): 145–148. doi:10.1016/S0304-3940(01)02527-7. PMID 11897159.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Braina, K.R., Greena, D.M., Dykesb, P.J., Marksb, R., Bola, T.S., The Role of Menthol in Skin Penetration from Topical Formulations of Ibuprofen 5% in vivo, Skin Pharmacol Physiol, 2006;19:17-21
  4. PDR for Herbal Medicines, 4th Edition, Thomson Healthcare, page 640. ISBN 978-1563636783
  5. Croteau RB, Davis EM, Ringer KL, Wildung MR (2005). "(-)-Menthol biosynthesis and molecular genetics". Naturwissenschaften. 92 (12): 562–77. doi:10.1007/s00114-005-0055-0. PMID 16292524. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  6. http://www.flex-news-food.com/pages/13467/Flavour/Japan/japan-takasago-expand-menthol-production-iwata-plant.html
  7. N. Hiki et al. (2011). “A Phase I Study Evaluating Tolerability, Pharmacokinetics, and Preliminary Efficacy of l-Menthol in Upper Gastrointestinal Endoscopy“. Clinical Pharmacology & Therapeutics 90 2, 221–228. doi:10.1038/clpt.2011.110
  8. L. T. Sandborn. "l-Menthone". Organic Syntheses; Collected Volumes, vol. 1, p. 340.
  9. J. L. Simonsen (1947). The Terpenes, Volume I (2nd ed.). Cambridge University Press. pp. 230–249.
  10. Adversoriorum varii argumentii, Liber unus, Leiden, 1771, p99.
  11. A. Oppenheim (1862). "On the camphor of peppermint". J. Chem. Soc. 15: 24. doi:10.1039/JS8621500024.
  12. G. H. Beckett and C. R. Alder Wright (1876). "Isomeric terpenes and their derivatives. (Part V)". J. Chem. Soc. 29: 1. doi:10.1039/JS8762900001.
  13. M. Moriya (1881). "Contributions from the Laboratory of the University of Tôkiô, Japan. No. IV. On menthol or peppermint camphor". J. Chem. Soc., Trans. 39: 77. doi:10.1039/CT8813900077.
  14. R. W. Atkinson and H. Yoshida (1882). "On peppermint camphor (menthol) and some of its derivatives". J. Chem. Soc., Trans. 41: 49. doi:10.1039/CT8824100049.
  15. Therapeutic Goods Administration (1999). "Approved Terminology for Medicines" (PDF). Retrieved 29 June 2009. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)
  16. 日本药局方. "Japanese Pharmacopoeia". Retrieved 29 June 2009. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)
  17. Sigma Aldrich. "DL-Menthol". Retrieved 29 June 2009. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help); Unknown parameter |ALDRICH&N5= ignored (help); Unknown parameter |BRAND_KEY&F= ignored (help)

Further reading

  • E. E. Turner, M. M. Harris, Organic Chemistry, Longmans, Green & Co., London, 1952.
  • Handbook of Chemistry and Physics, 71st edition, CRC Press, Ann Arbor, Michigan, 1990.
  • The Merck Index, 7th edition, Merck & Co, Rahway, New Jersey, USA, 1960.
  • Perfumer & Flavorist, December, 2007, Vol. 32, No.12, Pages 38–47

See also

External links


Analgesics (N02A, N02B)
Opioids
Opiates/opium
Semisynthetic
Synthetic
Paracetamol-type
NSAIDs
Propionates
Oxicams
Acetates
COX-2 inhibitors
Fenamates
Salicylates
Pyrazolones
Others
Cannabinoids
Ion channel
modulators
Calcium blockers
Sodium blockers
Potassium openers
Myorelaxants
Others

Categories:
Menthol Add topic