Misplaced Pages

Propionyl-CoA

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by CheMoBot (talk | contribs) at 12:39, 28 September 2011 (Updating {{chembox}} (no changed fields - added verified revid - updated 'DrugBank_Ref', 'UNII_Ref', 'ChEMBL_Ref', 'ChEBI_Ref', 'KEGG_Ref', 'ChEBI_Ref') per Chem/Drugbox validation (report [[Wikipedia_talk:WikiProject_Chemicals|error). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 12:39, 28 September 2011 by CheMoBot (talk | contribs) (Updating {{chembox}} (no changed fields - added verified revid - updated 'DrugBank_Ref', 'UNII_Ref', 'ChEMBL_Ref', 'ChEBI_Ref', 'KEGG_Ref', 'ChEBI_Ref') per Chem/Drugbox validation (report [[Wikipedia_talk:WikiProject_Chemicals|error)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Propionyl-CoA
Names
IUPAC name S-methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] propanethioate
Other names Propionyl Coenzyme A; Propanoyl Coenzyme A
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.005.698 Edit this at Wikidata
MeSH propionyl-coenzyme+A
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C24H40N7O17P3S/c1-4-15(33)52-8-7-26-14(32)5-6-27-22(36)19(35)24(2,3)10-45-51(42,43)48-50(40,41)44-9-13-18(47-49(37,38)39)17(34)23(46-13)31-12-30-16-20(25)28-11-29-21(16)31/h11-13,17-19,23,34-35H,4-10H2,1-3H3,(H,26,32)(H,27,36)(H,40,41)(H,42,43)(H2,25,28,29)(H2,37,38,39)/t13?,17-,18-,19?,23?/m1/s1Key: QAQREVBBADEHPA-HOMDEXLGSA-N
  • InChI=1/C24H40N7O17P3S/c1-4-15(33)52-8-7-26-14(32)5-6-27-22(36)19(35)24(2,3)10-45-51(42,43)48-50(40,41)44-9-13-18(47-49(37,38)39)17(34)23(46-13)31-12-30-16-20(25)28-11-29-21(16)31/h11-13,17-19,23,34-35H,4-10H2,1-3H3,(H,26,32)(H,27,36)(H,40,41)(H,42,43)(H2,25,28,29)(H2,37,38,39)/t13?,17-,18-,19?,23?/m1/s1Key: QAQREVBBADEHPA-HOMDEXLGBF
SMILES
  • CCC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OCC3OC(n2cnc1c(N)ncnc12)(O)3OP(O)(O)=O
Properties
Chemical formula C24H40N7O17P3S
Molar mass 823.60 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Propionyl-CoA is a coenzyme A derivative of propionic acid.

Metabolism in animals

Production

There are several different ways in which it is formed:

Metabolic fate

In mammals, propionyl-CoA is converted to (S)-methylmalonyl-CoA by propionyl-CoA carboxylase, a biotin-dependent enzyme also requiring bicarbonate and ATP.

This product is converted to (R)-methylmalonyl-CoA by methylmalonyl-CoA racemase.

(R)-Methylmalonyl-CoA is converted to succinyl-CoA, an intermediate in the tricarboxylic acid cycle, by methylmalonyl-CoA mutase, an enzyme requiring cobalamin to catalyze the carbon-carbon bond migration.

The methylmalonyl-CoA mutase mechanism begins with the cleavage of the bond between the 5' CH2- of 5'-deoxyadenosyl and the cobalt, which is in its 3+ oxidation state (III), which produces a 5'-deoxyadenosyl radical and cabalamin in the reduced Co(II) oxidation state.

Next, this radical abstracts a hydrogen atom from the methyl group of methylmalonyl-CoA, which generates a methylmalonyl-CoA radical. It is believed that this radical forms a carbon-cobalt bond to the coenzyme which is then followed by the rearrangement of the substrate's carbon skeleton, thus producing a succinyl-CoA radical. This radical then goes on to abstract a hydrogen from the previously produced 5'-deoxyadenosine, again creating a deoxyadenosyl radical, which attacks the coenzyme to reform the initial complex.

A defect in methylmalonyl-CoA mutase enzyme results in methylmalonic aciduria, a dangerous disorder that causes a lowering of blood pH.

Metabolism in plants and insects

In plants and insects propionyl-CoA is metabolized to acetate in a very different way, similar to beta oxidation.

Not all details of this pathway have been worked out, but it appears to involve formation of acrylyl-CoA, then 3-hydroxypropionyl-CoA.

This is metabolized with loss of carbon 1 of 3-hydroxypropionyl-CoA as carbon dioxide, while carbon 3 becomes carbon 1 of acetate.

References

Amino acid metabolism metabolic intermediates
Kacetyl-CoA
lysine
leucine
tryptophanalanine
G
G→pyruvate
citrate
glycine
serine
G→glutamate
α-ketoglutarate
histidine
proline
arginine
other
G→propionyl-CoA
succinyl-CoA
valine
isoleucine
methionine
threonine
propionyl-CoA
G→fumarate
phenylalaninetyrosine
G→oxaloacetate
Other
Cysteine metabolism
Categories: