Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
Trace amines are an endogenous group of amines structurally and metabolically related to classical monoamine neurotransmitters, such as dopamine, norepinephrine, and serotonin. Compared to the classical monoamines, they are present in trace concentrations. They are distributed heterogeneously throughout the mammalian brain and peripheral nervous tissues and exhibit high rates of metabolism. Although, they can be synthesized within parent monoamine neurotransmitter systems, there is evidence that suggests that some of them may comprise their own independent neurotransmitter systems.
Trace amines may play very significant roles in the coordination of biogenic monoamine-based synaptic physiology. At high concentrations, they have well-characterized presynaptic ‘‘amphetamine-like’’ effects on monoamine release, reuptake and biosynthesis; at lower concentrations, they possess postsynaptic modulatory effects that potentiate the activity of other neurotransmitters, particularly dopamine and serotonin. A family of G protein coupled receptors known as TAARs (trace amine associated receptors) has been characterized to be responsive to trace amines and structurally related psychoactive drugs, such as amphetamine, MDMA, LSD, and DMT. Like dopamine, noradrenaline, and serotonin, the trace amines have been implicated in a vast array of human disorders of affect and cognition, such as depression and schizophrenia.
A thorough review of trace amines and trace amine receptors that discusses the historical evolution of this research particularly well is that of Grandy.
Burchett SA, Hicks TP. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog Neurobiol. 2006 Aug;79(5-6):223-46.
Burchett SA, Hicks TP. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog Neurobiol. 2006 Aug;79(5-6):223-46.
Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics. 2005 Mar;85(3):372-85.
Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol. 2001 Dec;60(6):1181-8.
Davis, B.A., Boulton, A.A., 1994. The trace amines and their acidic metabolites in depression—an overview. Prog. Neuropsychopharmacol. Biol. Psychiatry 18, 17–45.
Notes: (1) TAAR1 activity of ligands varies significantly between species. Some agents that are TAAR1 ligands in some species are not in other species. This navbox includes all TAAR1 ligands regardless of species. (2) See the individual pages for references, as well as the List of trace amines, TAAR, and TAAR1 pages. See also:Receptor/signaling modulators