This is an old revision of this page, as edited by Reddi (talk | contribs) at 13:31, 23 August 2013. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 13:31, 23 August 2013 by Reddi (talk | contribs)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Jean Charles Athanase Peltier | |
---|---|
Born | February 22, 1785 Ham |
Died | October 27, 1845 Paris, France |
Occupation | Physicist |
Jean Charles Athanase Peltier (/ˈpɛlti.eɪ/; French: [pɛlˈtje]; February 22, 1785, in Ham – October 27, 1845, in Paris) was a French physicist. He was originally a watch dealer, but at 30 years old took up experiments and observations in the field of physics.
Peltier was the author of numerous papers in different departments of physics, but his name is specially associated with the thermal effects at junctions in a voltaic circuit. He introduced the Peltier effect. Peltier also introduced the concept of electrostatic induction (1840), based on the modification of the distribution of electric charge in a material under the influence of a second object closest to it and it's an electrical charge. This effect has been very important in the recent development of non-polluting cooling mechanisms
Biography
Peltier initially trained as a watchmaker and was up to his 30s working as a watch dealer. Peltier worked with Abraham Louis Breguet in Paris. Later, he worked with various experiments on electrodynamics and noticed that an electronic element when current flows through a temperature difference or temperature difference at a generated current flow. In 1836, he published his work to the 1838 by Emil Lenz were confirmed. Furthermore, Peltier dealt with topics from the atmospheric electricity and meteorology. In 1840, he published a work on the causes and formation of hurricanes.
Peltier discovered the calorific effect of electric current passing through the junction of two different metals. This is now called the Peltier effect (or Peltier–Seebeck effect). By switching the direction of current, either heating or cooling may be achieved. Junctions always come in pairs, as the two different metals are joined at two points. Thus heat will be moved from one junction to the other.
Peltier effect
Main article: Peltier effectThe Peltier effect is the presence of heating or cooling at an electrified junction of two different conductors (1834). When electromotive current is made to flow through a electronic junction between two conductors (A and B), heat is removed at the junction. To make a typical pump, multiple junctions are created between two plates. One side heats and the other side cools. A dissipation device is attached to the hot side to maintain cooling effect on the cold side.
Typically, the use of the Peltier effect as a heat pump device involves multiple junctions in series, through which a current is driven. Some of the junctions lose heat due to the Peltier effect, while others gain heat. Thermoelectric pumps exploit this phenomenon, as do thermoelectric cooling Peltier modules found in refrigerators.
The Peltier effect generated at the junction per unit time, , is equal to
where,
- () is the Peltier coefficient of conductor A (B), and
- is the electric current (from A to B).
Note: Total heat generated at the junction is not determined by the Peltier effect alone, being influenced by Joule heating and thermal gradient effects.
The Peltier coefficients represent how much heat is carried per unit charge. With charge current continuous across a junction, the associated heat flow will develop a discontinuity if and are different.
The Peltier effect can be considered as the back-action counterpart to the Seebeck effect (analogous to the back-emf in magnetic induction): if a simple thermoelectric circuit is closed then the Seebeck effect will drive a current, which in turn (via the Peltier effect) will always transfer heat from the hot to the cold junction.
See also: Thermoelectric materialsPublications
Listed by date
|
|
Other
- Notice des faits principaux et des instrumens nouveaux ajoutés à la science de l'Electricité par M. Peltier.
- Mémoires sur l'électricité des vapeurs, sur l'électricité atmosphérique et sur les trombes. Imprimerie de Cosson.
- Météorologie électrique: Première partie
References and notes
- General
- The Annual Report Of The Board Of Regents Of The Smithsonian Institution. 1867 Doc. No. 86. 1868. p158+.
- Florian Cajori, A history of physics in its elementary branches. 1922. p269.
- Citations
- Catalogue of the Wheeler gift of books, Volume 2. By American Institute of Electrical Engineers. Library, Latimer Clark, Schuyler Skaats Wheeler, Andrew Carnegie, William Dixon Weaver, Engineering Societies Library, Joseph Plass
- "Peltier effect". dictionary.reference.com (ed. though transcribed as two syllables, the recording is more natural, with three)
- A Handy Book of Reference on All Subjects and for All Readers, Volume 6. Edited by Ainsworth Rand Spofford, Charles Annandale. Gebbie publishing Company, limited, 1900. p341 (ed., also Gebbie, 1902 version, p341
- Contemporarily, known as the thermoelectric effect.
- or generated
- This is usually a heatsink and fan assembly.
- The Peltier effect, where current is forced through a junction of two different metals, also forms the basis of the small 12/24 volt vehicular HVAC systems. It forms the basis of the relatively costly, but stable, junction heated soldering irons. It is used for spot cooling of certain integrated circuits.
- ^ Yu. A. Skripnik, A. I. Khimicheva. Methods and devices for measuring the Peltier coefficient of an inhomogeneous electric circuit. Measurement Techniques July 1997, Volume 40, Issue 7, pp 673-677
- The magnetic field B is sometimes called magnetic induction.
- Also contains the papers of: Achille Barbier, Edouard Ernest Blavier, Hippolyte Marié-Davy, comte Th Du Moncel, François Victor Périn, Karl Albert Holmgren, B. Galletti, A. Jounin, Achille Cazin, Emil Kopp, Breton frères
- Tr. Observations on a new species of floscularia
- Tr. Notice of the main facts and new instruments added to the science of electricity.
- Tr. Notice key facts added to the science of Electricity
- Tr. Observations on multipliers and on thermo-electric batteries
- Tr. Memory training tables reports that between the strength of an electric current and the deflection of needles multipliciateurs: follow-up research on the causes of disruption of thermocouples and how to ensure in their job measuring average temperatures
- Tr. Memory on the various species of mist
- Tr. Meteorology :Observations and experimental research on the causes that contribute to the formation of tornadoes.
- Tr. General considerations on the ether, followed by instructions on shooting stars
- Tr. Essay on the coordination of the above causes, produce and accompany electrical phenomena
- Tr. Letter to the cause of differences between the results of the experiments of MM. Bravais and Peltier on the temperature of boiling water and the results of experiments cabinet.
- institut. 22 avril 1844. (Comptes-rendus, vol. 18, p. 768.)
- Tr. Observations in the Alps on the boiling temperature of water.
- Tr. The cyanométrie and air polarimetry: or user of the additions and changes made to the cyano-polariscope M. Arago, to make cyano-polarimeter in the observation of all points of the sky.
- Tr. Notice the fluid forces, and lightning
- Tr. Notice of the main facts and new instruments added to the science of Electricity by Mr. Peltier
- Tr. Memoirs of electricity vapor on atmospheric electricity and waterspouts
- Power Meteorology: Part One
This article about a French physicist is a stub. You can help Misplaced Pages by expanding it. |